Abstract:
Substrates, systems and methods for analyzing materials that include waveguide arrays disposed upon or within the substrate such that evanescent fields emanating from the waveguides illuminate materials disposed upon or proximal to the surface of the substrate, permitting analysis of such materials. The substrates, systems and methods are used in a variety of analytical operations, including, inter alia, nucleic acid analysis, including hybridization and sequencing analyses, cellular analyses and other molecular analyses.
Abstract:
Apparatus and corresponding methods for measuring a plurality of parameters of a cut gemstone while it is positioned at a single measurement location. Apparatus comprise a plurality of light sources, each configured to emit light at a different one of a plurality of emission wavelengths or ranges of wavelengths such that the emitted light illuminates at least part of the measurement location. Apparatus further comprise a sensor assembly configured to sense light at a plurality of sensing wavelengths or ranges of wavelengths for measuring the plurality of parameters. The sensed light is received at the sensor assembly from the measurement location as a result of illumination of a cut gemstone located at the measurement location.
Abstract:
An Integrated Circuit (IC) chip with a lab-on-a-chip, a method of manufacturing the lab-on-a-chip and a method of using the lab-on-a-chip for fluid flow analysis in physical systems through combination with computer modeling. The lab-on-a-chip includes cavities in a channel layer and a capping layer, preferably transparent, covering the cavities. Gates control two dimensional (2D) lattice structures acting as heaters, light sources and/or sensors in the cavities, or fluid channels. The gates and two dimensional (2D) lattice structures may be at the cavity bottoms or on the capping layer. Wiring connects the gates and the 2D lattice structures externally.
Abstract:
A photoacoustic remote sensing system (PARS) for imaging a subsurface structure in a sample has an excitation beam configured to generate ultrasonic signals in the sample at an excitation location; an interrogation beam incident on the sample at the excitation location, a portion of the interrogation beam returning from the sample that is indicative of the generated ultrasonic signals; an optical system that focuses at least one of the excitation beam and the interrogation beam with a focal point that is below the surface of the sample; and a detector that detects the returning portion of the interrogation beam.
Abstract:
A test strip with an incorporated optical waveguide and deflectors punched through the optical waveguide allows light to exit through a layer of the test strip and be detected by a photo detector. Using light and a photodetector, these uniquely coded strips are identified. The waveguide can be constructed by sandwiching two layers of the test strip around a light transmissible layer. This configuration allows light to be transmitted through the test strip and out the other end, as well as allowing some light to escape the deflector. This light is detected by a photodetector mounted in the analyte test meter. The deflectors may be placed in patterns such that detection of this light indicates certain characteristics of the strip, such as non-counterfeit, regional identification, type of analyte tested, and coding information.
Abstract:
An Integrated Circuit (IC) chip with a lab-on-a-chip, a method of manufacturing the lab-on-a-chip and a method of using the lab-on-a-chip for fluid flow analysis in physical systems through combination with computer modeling. The lab-on-a-chip includes cavities in a channel layer and a capping layer, preferably transparent, covering the cavities. Gates control two dimensional (2D) lattice structures acting as heaters, light sources and/or sensors in the cavities, or fluid channels. The gates and two dimensional (2D) lattice structures may be at the cavity bottoms or on the capping layer. Wiring connects the gates and the 2D lattice structures externally.
Abstract:
Optics collection and detection systems are provided for measuring optical signals from an array of optical sources over time. Methods of using the optics collection and detection systems are also described.
Abstract:
An analytical device including an optically opaque cladding, a sequencing layer including a substrate disposed below the cladding, and a waveguide assembly for receiving optical illumination and introducing illumination into the device. The illumination may be received from a top, a side edge, and a bottom of the device. The waveguide assembly may include a nanoscale aperture disposed in the substrate and extending through the cladding. The aperture defines a reaction cell for receiving a set of reactants. In various aspects, the device includes a sensor element and the illumination pathway is through the sensor element. Waveguides and illumination devices, such as plasmonic illumination devices, are also disclosed. Methods for forming and operating the devices are also disclosed.
Abstract:
A liquid sample analyzer includes a flow cell, a light source, and a lamp temperature management system. The flow cell is configured to receive a flow of a liquid sample from a liquid sample source. The light source includes a lamp configured to emit light to illuminate the flow of the liquid sample in the flow cell. The lamp temperature management system includes: an air flow generator operable to generate a turbulent air flow to cool the lamp; a thermally conductive primary housing encapsulating the lamp such that a primary air gap is provided between the primary housing and the lamp; and a thermally conductive secondary housing surrounding the primary housing and configured to deflect the turbulent air flow away from the primary housing.
Abstract:
The present invention describes (bio)chemo-functional waveguide grating structures consisting of at least one (bio)chemo-functional waveguide grating structure unit or at least one (bio)chemo-functional sensor location with beam guidance permitting light beam separation, as well as detection methods for parallel analysis which are marking-free or based on marking.