Abstract:
A spectrometer is disclosed which comprises a plasma torch and an induction coil for generating a normal plasma within the torch. The torch has an outer tube and an inner tube. If the plasma collapses from a normal plasma state to a toroidal or faulty plasma shape, a photodiode detects the change in shape so that the plasma torch can be shut down to prevent the plasma shape from melting the tube of the torch.
Abstract:
A sensing element, a method of making a sensing element, and a fiber optic sensor incorporating the sensing element are described. The sensor can be used for the quantitative detection of NO2 in a mixture of gases. The sensing element can be made by incorporating a diazotizing reagent which reacts with nitrous ions to produce a diazo compound and a coupling reagent which couples with the diazo compound to produce an azo dye into a sol and allowing the sol to form an optically transparent gel. The sensing element changes color in the presence of NO2 gas. The temporal response of the absorption spectrum at various NO2 concentrations has also been recorded and analyzed. Sensors having different design configurations are described. The sensing element can detect NO2 gas at levels of parts per billion.
Abstract:
The present invention is directed to solving the problems associated with the detection of surface defects on metal bars as well as the problems associated with applying metal flat inspection systems to metal bars for non-destructive surface defects detection. A specially designed imaging system, which is comprised of a computing unit, line lights and high data rate line scan cameras, is developed for the aforementioned purpose. The target application is the metal bars (1) that have a circumference/cross-section-area ratio equal to or smaller than 4.25 when the cross section area is unity for the given shape, (2) whose cross-sections are round, oval, or in the shape of a polygon, and (3) are manufactured by mechanically cross-section reduction processes. The said metal can be steel, stainless steel, aluminum, copper, bronze, titanium, nickel, and so forth, and/or their alloys. The said metal bars can be at the temperature when they are being manufactured.
Abstract:
A system for sampling and analyzing a material located at a hazardous site. A laser located remote from the hazardous site is connected to an optical fiber, which directs laser radiation proximate the material at the hazardous site. The laser radiation abates a sample of the material. An inductively coupled plasma is located remotely from the material. An aerosol transport system carries the ablated particles to a plasma, where they are dissociated, atomized and excited to provide characteristic optical reduction of the elemental constituents of the sample. An optical spectrometer is located remotely from the site. A second optical fiber is connected to the optical spectrometer at one end and the plasma source at the other end to carry the optical radiation from the plasma source to the spectrometer.
Abstract:
In a spectrophotometer, each of a plurality of source optical fibers is selectively receptive of source radiation and carries the radiation to a corresponding selected liquid sample cell. A corresponding return optical fiber returns transmitted radiation from the sample to a polychromator. For selecting a sample, a switching member holds exposed ends of the optical fibers on a circle coaxial with an axle for rotating to selected positions. Respective optical trains in the instrument direct radiation into and out of the selected pair of fibers. The diameter of a source aperture, the spacing of the aperture from the radiation source, and the source area define a source etendue. The optical fibers have a fiber etendue substantially the same as the source etendue.
Abstract:
A device (1) for photoelectrically sensing the color of an object (18) includes a plurality of light emitting diodes (4, 6, 8) emitting light in a narrow range of wavelengths and where the light is transmitted through a corresponding fiber optic bundle (10, 12, 14) with a diameter in proportion to the transmission loss of the bundle and in inverse proportion to the emitted light energy of the corresponding light emitting diode and in proportion to the spectral response of a receiving photodiode (24). A receiving section (22) utilizes a PIN type photodiode (24) with an input section (40) that matches the shape of a receiving optical fiber bundle termination (42) where the photodiode (24) converts the reflected light from the object (18) into electrical signals which are then processed by a microprocessor (28) which also controls the activation of the light emitting diodes (4, 6, 8) and outputs a signal indicative of the color of the object (18).
Abstract:
An apparatus is provided for obtaining spectral information and quantifying the physical properties of a sample. The apparatus comprises a light source and a high-efficiency fiber optic switch means communicating with the light source for directing the light alternatively along at least two channels, the two channels comprising at least one reference channel and at least one sample channel. A sample means communicates with the sample channel for providing an interface between the light and the sample. A fiber optic means comprising a high-efficiency fiber optic switch and/or an optical coupler communicates with the sample channels and the reference channels and directs the light alternatively from the reference and sample channels to a mode scrambler. A wavelength discrimination device separates the light from the mode scrambler into component wavelengths and provides spectral information for the determination of the physical properties of the sample. The apparatus of the present invention provides superior chemometric prediction accuracy, is reliable, durable, and stable over time, and provides outstanding performance in a manufacturing or field environment.
Abstract:
A fiber-optic probe which is useful for measuring Raman spectra of samples remote from the light source and detector. The probe head contains optical components which selectively remove unwanted fluorescence and Raman scattering arising from the interaction between the Raman excitation source radiation and the input optical fiber. The optics also filter the Raman excitation source into a return optical fiber leading to a spectrometer or detector. In one embodiment, the disposition of optical components provides a compact probe geometry with parallel input and output fibers at one end and a sampling port at the other end. An encasement for the optics is also disclosed, for sealing the components against the environment, and for coupling the probe to specialized sampling attachments, such as for conducting Surface Enhanced Raman Spectroscopy.
Abstract:
An instrument for detecting single airborne particles, and measuring their concentration, includes a transmitting optical fiber optically connected to a light source at one end, and a collecting optical fiber connected to a photodiode at one of its ends. The respective opposite ends of the optical fibers are potted into a rigid probe head with their exposed ends polished smooth and flat, facing each other and separated by an air gap of about one-tenth of an inch. At least some of the light from the source crosses the gap between the optical fibers and reaches the detector, such portion of the light defining a particle sensing volume. Particles passing through this volume are detected by optical extinction as they reduce the amount of light reaching the detector. The device has simple optics, requiring no lenses or mirrors. The transmitting and collecting fibers, and the air gap, form a well defined and repeatable sensing volume so that individual devie calibration is not required. The probe is small and rugged, allowing it to be inserted directly in a fluid flow for in-situ measurements even in hostile environments. Associated signal processing electronics account for fluid stream velocity, so that the device measures true aerosol concentration in a fluid stream, regardless of changes in the stream velocity. The particle size threshold in the electronics is a percentage of the light to the detector which allows to remain in calibration when the amount of light through the probe changes.
Abstract:
An oxygen sensor contains an indicator whose change in absorption is a function of the concentration of oxygen in a sample bathing the indicator. Light transmitted and reflected through the indicator of the sensor undergoes an absorption that is characteristic of the concentration of oxygen. The indicator is a viologen whose absorption returns to a steady-state value after it has been subjected to a pulse of short-wavelength light. The rate at which the absorption returns to the steady-state value is a function of the concentration of oxygen bathing the viologen indicator. A measurement system for use with the pO.sub.2 sensor causes a short-wavelength flash to be sent to the sensor and thereafter monitors the time-varying absorption of the sensor to measure the oxygen content of the sample bathing the viologen indicator.