Abstract:
One aspect of the invention provides a sensor including: one or more fiber optic emitters and one or more fiber optic receivers lying in the same plane and spaced from, but proximate to the one or more fiber optic emitters. Another aspect of the invention provides a sensor including: one or more fiber optic emitters and one or more fiber optic receivers spaced from, but proximate to the one or more fiber optic emitters. Each of the one or more fiber optic receivers have an end that lies outside of a light beam emitted by the one or more fiber optic emitters.
Abstract:
Methods for continuous, real-time process monitoring and control of bioprocesses by means of near-infrared (NIR) spectroscopy provide analysis of static or flowing fluid streams which may range from clear to highly optically dense. A NIR source passes through a wavelength selector to select one or more spectral segments, which are passed through the fluid stream at a fluid sampling interface and received at a sensor. A wavelength reference material is positioned in the optical path for wavelength axis calibration. Quantification of a plurality of characteristics or parameters of a fluid and suspended solids or cells contained therein may be performed. An all-solid-state implementation of the optical system ensures high robustness for bioprocess monitoring and control.
Abstract:
The present disclosure provides for a system and method for analyzing a sample comprising at least one unknown material. A first location may be scanned to generate a SWIR hyperspectral image. The SWIR hyperspectral image may be generated using dual polarization techniques. The SWIR hyperspectral image may be analyzed to target a second location comprising the unknown material. This second location may be further analyzed using Raman spectroscopic techniques and a Raman data set may be generated. The Raman data set may be further analyzed to associate the unknown material with a know material.
Abstract:
Analysis methods and apparatus are provided for inspecting a channel, such as a capillary electrophoresis channel, in a device. Configuration and alignment systems are provided, together with optical systems and temperature control.
Abstract:
In order to calculate and specify a valley wavelength easily and in a short period of time, a detection device for intermolecular interaction is disclosed that is equipped with a detector provided with a ligand, a white light source that irradiates the detector with white light, a spectrometer that detects the light reflected from the detector, and a control device that controls the white-light source and the spectrometer, wherein the aforementioned control device obtains a reflection spectrum by calculating the reflectivity over a fixed wavelength interval, approximates the aforementioned reflection spectrum as a high-dimensional function, selects a wavelength interval comprising the minimum reflectivity from the aforementioned high-dimensional function, approximates the aforementioned high-dimensional function with the aforementioned wavelength interval as a quadratic function of a lower order, and obtains a solution by which the aforementioned quadratic function is differentiated with respect to the wavelength and the value thereof becomes 0.
Abstract:
A bioinstrumentation apparatus irradiates light onto a measured region of a subject, detects diffused light to acquire internal information on the measured region, and includes: a container holding a light transmitting medium; a light irradiation unit including a plurality of light emitting ends fixed to the container and irradiating a first light and a second light that mutually differ in wavelength onto the measured region that is immersed in the medium; a light detection unit including a plurality of light detecting ends fixed to the container and detecting the diffused light from the measured region; and a computing unit computing the internal information based on an output signal from the light detection unit; the wavelength of the first light being a wavelength at which an absorption coefficient of the measured region and a mean value of absorption coefficient of the medium are substantially equal, the wavelength of the second light being a wavelength at which the absorption coefficient of the measured region is greater than the mean value of the absorption coefficient of the medium, and the computing unit computing the internal information based on an output signal related to diffused light of the first light and computing boundary information between the measured region and the medium based on an output signal related to diffused light of the second light.
Abstract:
The present invention relates to a fluorescence correlation spectroscopy system (1) for analyzing particles in a medium (2), including a means (3) for detecting the light (7) emitted by the particles in the medium (2), said means (3) being coupled to a waveguide (4), for which purpose the end piece of the guide (4) comprises a means (4b; 5) for confining the light (7) injected into the guide (4).