Abstract:
Improved diamond particle emitters, useful for flat panel displays, are fabricated by suspending nanometer-sized ultra-fine particles in a solution, applying the suspension as a coating onto a conducting substrate such as n-type Si or metal, subjecting the coated substrate to a plasma of hydrogen, and applying a thin, conformal diamond overcoating layer onto the particles. The resulting emitters show excellent emission properties, such as extremely low turn-on voltage, good uniformity and high current densities. In particular, the electron emitters are capable of producing electron emission current densities of at least 0.1 mA/,mm.sup.2 at extremely low vacuum electric fields of 0.2-3.0 V/.mu.m V/.mu.m. These field values are about an order of magnitude lower than exhibited by the best defective CVD diamond and almost two orders of magnitude lower than p-type semiconducting diamond. It is further found that the emission characteristics remain the same even after the plasma treated diamond surface is exposed to air for several months.
Abstract translation:用于平板显示器的改进的金刚石颗粒发射器通过将纳米尺寸的超细颗粒悬浮在溶液中来制造,将悬浮液作为涂层施涂到诸如n型Si或金属的导电基材上,使经涂覆的基材 氢的等离子体,并将薄的保形金刚石外涂层施加到颗粒上。 所得到的发射体显示出优异的发射特性,例如极低的导通电压,良好的均匀性和高的电流密度。 特别地,电子发射体在0.2-3.0V / m V /μm的极低真空电场下能够产生至少0.1mA / mm2的电子发射电流密度。 这些场值比由最好的有缺陷的CVD金刚石显示的低一个数量级,比p型半导体金刚石低两个数量级。 进一步发现即使在等离子体处理的金刚石表面暴露于空气几个月之后,发射特性也保持不变。
Abstract:
A cold-cathode discharge display device which includes a fluorescent tube and electrodes containing R.sub.2 O.sub.3-z, where R is an atom or an atom group of rare earth elements, O is oxygen, and z is 0.0 to 1.0, to perform field emission of electrons and emission of secondary electrons. The electrodes are generated with an electron emitting film containing rare earth elements.
Abstract translation:一种冷阴极放电显示装置,包括荧光管和含有R 2 O 3 -z的电极,其中R是稀土元素的原子或原子团,O为氧,z为0.0至1.0,以进行电子的场发射 和二次电子的发射。 电极由含有稀土元素的电子发射膜产生。
Abstract:
An electric gas discharge lamp includes an electrode having a tip portion comprised by a mesh body carrying an emitter material. The mesh body in a favorable embodiment is circular cylindrical and is attached via an electrically conductive thermal isolator to a conductive feed-through, such as a hollow ferrule, extending through a seal of the lamp vessel. As compared to a continuous walled tip portion of similar shape and material, the mesh body has a lower mass and heat capacity, and can therefore be operated at higher temperatures without increasing the temperature of the seal area. The higher operating temperature of the tip portion promotes greater electron emission from the emitter material, and therefore a lower cathode fall. A lower cathode fall enables the lamp to be operated at higher lamp currents for greater light output. The mesh body also has the capability to reduce sputtering from the electrode through improved adhesion of the emitter material to the tip portion and faster attainment of its nominal operating temperature as compared to a smooth continuous walled body. In a favorable embodiment, the lamp is a low pressure discharge lamp having an inside diameter of less than about 5 mm.
Abstract:
The present invention is directed to new electrode structures for use in fluorescent lamps in which a tungsten base structure is provided with electron emissive materials including one or more of barium titanate, barium zirconate, barium strontium zirconate, barium cerium oxide, barium tantalate, and barium strontium yittrium oxide. Amounts of MgO may be added to improve or change emitter properties. A composite electrode structure can be formed by way of coating a tungsten coil with a slurry of this material, or providing powdered mixtures of both the electron emissive material and tungsten material and sintering this powdered material into a high density composite electrode structure.
Abstract:
A xenon electronic flash tube has a transparent glass tube body. Xe gas is enclosed in the tube body. An anode is projected inside the tube body. A cathode, inside the tube body, is projected toward the anode, and includes base metal material and a Cs compound having a characteristic of emitting electrons, such as Cs.sub.2 Ta.sub.2 O.sub.6.
Abstract translation:氙气电子闪光管具有透明的玻璃管体。 Xe气体封闭在管体内。 阳极突出在管体内。 管体内部的阴极向阳极突出,并且包括贱金属材料和具有发射电子特性的Cs化合物,例如Cs 2 Ta 2 O 6。
Abstract:
A field emission cathode for use in flat panel displays comprises a layer of conductive material and a layer of amorphic diamond film, functioning as a low effective work-function material, deposited over the conductive material to form emission sites. The emission sites each contain at least two sub-regions having differing electron affinities. The cathode may be used to form a computer screen or a fluorescent light source.
Abstract:
A flat panel display of a field emission type having a triode (three terminal) structure and useful as a device for displaying visual information is disclosed. The display includes a plurality of corresponding light-emitting anodes and field-emission cathodes, each of the anodes emitting light in response to emission from each of the corresponding cathodes, each of the cathodes including a layer of low work function material having a relatively flat emission surface which includes a plurality of distributed localized electron emission sites and a grid assembly positioned between the corresponding anodes and cathodes to thereby control emission levels to the anodes from the corresponding cathodes. In the preferred embodiment of the invention, the layer of low work function material is amorphic diamond film. The grid assembly includes a conductive layer deposited between the plurality of anodes and cathodes and over interstices between the cathodes, the conductive layer having apertures therein, the cathodes aligned with, and of the same size as, the apertures.
Abstract:
A negative glow discharge lamp includes a light transmitting envelope containing a noble gas fill material. A pair of electrically spaced electrodes is disposed in a parallel relationship within the envelope. A pair of lead-in wires is coupled to each of the electrodes and extends through and is hermetically sealed in the envelope. A pair of wire probes is associated with each of the spaced electrodes. Each of the ends of the spaced electrodes has one of the wire probes extending beyond the electrode associated therewith and toward the other electrode. The present invention provides a negative glow discharge lamp that has improved lamp efficacy and enhanced lamp life.
Abstract:
An electrode for discharge light source which is suitable for discharge display on account of its high reliability and outstanding discharge characteristics attributable to the metal conductor which is formed 1-5 .mu.m thick in the discharge container and also to the film of the material for secondary emission which is formed on the metal conductor from a compound composed of LaB.sub.6 and Ba in an amount of 0.01-20 mol % of LaB.sub.6 or a compound composed of LaB.sub.6, Ba in an amount of 0.01-20 mol % of LaB.sub.6, and Ca in an amount of 0.01-5 mol % of Ba, and is 0.5-2 .mu.m thick so that it is free of pin-holes.