Abstract:
A printed circuit board having an insulating layer; circuit patterns formed on both surfaces of the insulating layer in order to be embedded in the insulating layer; and a bump formed to pass through the insulating layer in order to electrically connect the circuit patterns formed on both surfaces of the insulating layer.
Abstract:
A multilayer printed circuit board which can surely establish interlayer connection with low resistance. The multilayer printed circuit board comprises: a first substrate having a conductive pattern on one face and a non-penetration connection hole on the other face, for exposing the conductive pattern to outside; a second substrate having a conductive pattern formed on a face opposed to the other face of first substrate and a conductive bump on the conductive pattern integrally. The first substrate and the second substrate are integrated by engaging the bump of the second substrate with the connection hole of the first substrate and by intervening a conductive cement between the bumps and the conductive pattern exposed to outside from the connection holes.
Abstract:
A mask film, where squeegee cleaning part has been formed at a predetermined position, and another mask film are attached to both sides of a substrate. A through-hole is formed by using a laser, and conductive paste is filled into the through-hole by using a squeezing method. As discussed above, a paste-residue can be prevented on the through-hole, so that a circuit board having high quality of connection can be obtained.
Abstract:
Disclosed is a printed circuit board having an embedded electronic component, which includes a first insulating layer, an electronic component disposed in an opening formed in a thickness direction of the first insulating layer and having a metal bump, a polymer layer formed on one side of the first insulating layer and on which the electronic component is seated so that the metal bump of the electronic component perforates the polymer layer, a second insulating layer formed on the other side of the first insulating layer so as to embed the electronic component, a first circuit layer formed on the second insulating layer, and a second circuit layer formed on the polymer layer so as to be directly electrically connected to the metal bump that perforates the polymer layer, and in which roughness is formed on the polymer layer so that the force of adhesion of the polymer layer to a plating layer is enhanced, thus ensuring reliability of the electrical connection of a circuit layer which is subsequently formed.
Abstract:
A copper foil for a printed circuit board is provided. The copper foil includes a layer including nickel, zinc, a compound of nickel and that of zinc (hereinafter referred to as a “nickel zinc layer”) on a roughened surface of a copper foil and a chromate film layer on the nickel zinc layer. The zinc add-on weight per unit area of the nickel zinc layer is 180 μg/dm2 or more and 3500 μg/dm2 or less, and the nickel weight ratio in the nickel zinc layer {nickel add-on weight/(nickel add-on weight+zinc add-on weight)} is 0.38 or more and 0.7 or less. This surface treatment technology of a copper foil is able to effectively prevent the circuit corrosion phenomenon in cases of laminating a copper foil on a resin base material and using a sulfuric acid hydrogen peroxide etching solution to perform soft etching to the circuit.
Abstract:
The object of the present invention is to provide a metal layer with an insulating layer which is uniform and thin and can be produced in low cost. To achieve the object, a laminate composed of a ceramic insulating layer and a metal layer characterized in that the ceramic insulating layer has a binder provided among ceramic particles constituting a ceramic particle film formed by electrophoretic deposition of the ceramic particles is employed. The laminate can be suitably used as a base material for production of various types of electronic devices, the circuit formation of printed wiring boards, semiconductor circuits and circuits including semiconductor circuits, and capacitors utilizing dielectric performance of the ceramic insulating layer.
Abstract:
A low cost flexible substrate is described which comprises a thin metal foil and a layer of solder mask. The metal foil layer is patterned to create tracks and lands for solder bonding and/or wirebonding and the layer of solder mask is patterned to create openings for solder bonding, wirebonding and/or for mounting the die. The substrate may be used as a package substrate to create a packaged die or may be used as a replacement for more expensive flexible printed circuit boards.
Abstract:
To reduce connection defects between a circuit substrate provided on a core substrate and a circuit to be mounted thereon, thereby improving reliability as a multilayered device mounting substrate. The device mounting substrate includes: a first circuit substrate composed of a substrate, an insulating layer formed on this substrate, and a first conductive layer (including conductive parts) formed on this insulating layer; and a second circuit substrate mounted on the first circuit substrate, being composed of a base, a second conductive layer (including conductive parts) formed on the bottom of the base, and a third conductive layer (including conductive parts) formed on the top of the base. Here, the first and second circuit substrates are bonded by pressure so that the first and second conductive parts are laminated and embedded together into the insulating layer. The first and second conductive parts form connecting areas in the insulating layer, thereby connecting the first and second circuit substrates electrically.
Abstract:
A ceramic/metal composite structure includes an aluminum oxide substrate, an interface bonding layer and a copper sheet. The interface bonding layer is disposed on the aluminum oxide substrate. The copper sheet is disposed on the interface bonding layer. The interface bonding layer bonds the aluminum oxide substrate to the copper sheet. Some pores are formed near or in the interface bonding layer. A porosity of the interface bonding layer is substantially smaller than or equal to 25%. A method of manufacturing the ceramic/metal composite structure is also provided.
Abstract:
A copper foil with a resistance layer is provided, wherein the variation value is small when it is made into a resistance element, the adhesion with the resin substrate to be laminated with is able to be sufficiently maintained, which has an excellent characteristics as a resistance element for a rigid and a flexible substrate. A copper foil with a resistance layer of the present invention comprises a copper foil on one surface of which a metal layer or alloy layer is formed from which a resistance element is to be formed, the surface of the metal layer or alloy layer being subjected to a roughening treatment with nickel particles. A method of production of a copper foil with a resistance layer of the present invention comprises: forming a resistance layer of phosphorus-containing nickel on a matte surface of an electrodeposited copper foil having crystals comprised of columnar crystal grains wherein a foundation of the matte surface is within a range of 2.5 to 6.5 μm in terms of Rz value prescribed in JIS-B-0601; and performing roughening treatment to a surface of the resistance layer with nickel particles wherein a roughness is within a range of 4.5 to 8.5 μm in terms of Rz value prescribed in JIS-B-0601. The alloy layer is for example formed from phosphorus-containing nickel.