Abstract:
A package structure for connection with an output/input module is disclosed. The package structure can be applied to conventional multi-chip packages and system in packages. The package structure defines at least one insertion cavity that is vertically or horizontally disposed. By simply inserting an output/input module into the insertion cavity, an electrical connection can be established between the output/input module and the package structure. Accordingly, the package structure thus constructed can address the repairing, replacement and upgrading problems of electronic components encountered by a package structure that adopts the conventional soldering connection method.
Abstract:
An electronic apparatus includes: a housing provided with a first conductive pattern; a substrate provided with a first wiring layer in a surface thereof and fixed to the housing; and a first conductive member connecting the first conductive pattern and the first wiring layer. The first conductive pattern extends onto an outer surface and an inner surface of the housing. The first conductive member is in contact with each of at least a part of the first conductive pattern extending onto the inner surface and an end of the first wiring layer. Alternatively, an electronic apparatus includes: a housing provided with a conductive pattern and having a through part in a frame portion thereof; and a substrate provided with a wiring layer on a surface thereof and having a protruding part and fixed to the housing. The protruding part and the through part are fit. The conductive pattern extends onto an outer surface of the housing and onto an inner surface of the through part. At least some of the conductive pattern extending onto the inner surface is in contact with an end of the wiring layer.
Abstract:
An electro-optical module comprising flexible connection cable and aligning capabilities is disclosed. Electro-optical devices may be soldered on a transparent substrate such as glass or a substrate comprising an optical waveguide wherein electrically conductive traces are designed, forming an electro-optical module. When such electro-optical module is inserted and aligned into a printed circuit board, the external part of the substrate, comprising electrically conductive traces and pads, referred to as flex-cable, is bent down toward the mounting plane of the PCB allowing to establish electrical connections between these pads and the PCB. The substrate may be brokenalong a pre-formed groove, and the external part of the substrate can be removed leaving the flex-cable section in place.
Abstract:
A connecting structure of a printed circuit board of a liquid crystal display (LCD) module includes a double side printed circuit board and a single side printed circuit board. With the design of the double side printed circuit board having a solder element with two solder surfaces with a plurality of plated through holes (PTHs), and the design of the opening neighboring the solder element, the conducting surface of the single side printed circuit board may easily accord with the structural requirements to select the corresponding solder surface for performing welding.
Abstract:
In one aspect, a compact, lightweight, high-intensity and long-life LED lighting apparatus is provided. The LED lighting apparatus includes: a lens array including a plurality of lenses; a first circuit board including at least one LED (e.g., a plurality of surface-mount type LEDs); and a second circuit board electrically connected with the first circuit board to control illumination of the plurality of LEDs, wherein the second circuit board is configured substantially perpendicular to the first circuit board. In another aspect, a heat dissipation assembly is provided for a lighting apparatus that includes a first circuit board with at least one LED, and a second circuit board configured substantially perpendicular to the first circuit board.
Abstract:
A printed circuit board assembly has plural printed circuit boards that are mechanically and electrically connected to each other with them being stacked, and a connection layer that connects the adjacent two printed circuit boards to each other is provided. The connection layer includes an insulation portion and an electric conduction portion. The insulation portion contains an insulating member and is adhered to each of the adjacent two printed circuit boards. The electric conduction portion passes through the insulation portion and connects electrode terminals of the adjacent two printed circuit boards.
Abstract:
The present invention relates to a temperature sensing device with a first temperature sensor mounted to a housing at a first location proximate a first surface of the housing. The first temperature sensor senses a first temperature while a second temperature sensor senses a second temperature. A processor circuit is coupled to the first and second temperature sensors and a mounting device is coupled to either the housing or the processor circuit. The mounting device mounts the second temperature sensor at a second location proximate a second surface of the housing which is spaced apart from the first surface. The processor circuit is configured to estimate a third temperature based on the first and second temperatures and a distance between the first and second locations which is an estimate of a temperature at a third location.
Abstract:
An assembly is provided which includes a first circuit panel having a top surface, a first dielectric element and first conductive traces disposed on the first dielectric element. In addition, a second circuit panel has a bottom surface, a second dielectric element and second conductive traces disposed on the second dielectric element, where at least a portion of the second circuit panel overlies at least a portion of the first circuit panel. The assembly further includes an interconnect circuit panel having a third dielectric element which has a front surface, a rear surface opposite the front surface, a top end extending between the front and rear surfaces, a bottom end extending between the front and rear surfaces, and a plurality of interconnect traces disposed on the dielectric element. The bottom end of the interconnect element abuts the top surface of the first circuit panel and the top end abuts the bottom surface of the second circuit panel, where at least some of the first conductive traces are in conductive communication with the second conductive traces through the interconnect traces.
Abstract:
A temperature sensing device includes a first temperature sensor configured for mounting to a structure at a first distance relative to the structure. The temperature sensing device also includes a second temperature sensor configured for mounting to the structure at a second distance relative to the structure. The temperature sensing device also includes a processor coupled to the first and second temperature sensors and configured to estimate a third temperature based on the first and second temperatures and the distance separating the first and second temperature sensors.
Abstract:
In a camera according to the present invention, an edge portion of a lens barrel unit is projected and arranged from a front cover. The lens barrel unit is covered with a front cover cylindrical member connected to the front cover, and a front exposed portion of the front cover cylindrical member is covered with an exterior cylindrical member as a detachable (before-attaching) metal cylindrical member. The exterior cylindrical member is positioned and is fixed by an stop claw on the front-cover side. A C-shaped stop portion cover having flexibility is made flexible and is attached around the stop claw portion, and is fixed by a screw. The restriction on design is reduced on the appearance for covering the lens barrel unit of the camera, and a camera exterior portion can be made of metal.