Abstract:
A frequency converter is presented. The frequency converter includes a circuit module, which is interconnected to a circuit board and is connected to a heat sink. For attaining a frequency converter in a modular version with optimal cooling properties, the circuit module has a flexible, electrically insulating plastic film, which on one side has a circuit-structured logic metal layer and on the opposite side has a circuit-structured power metal layer that is contacted with a contact edge to a peripheral portion of the circuit board. The flexible circuit module protrudes at an angle away from the circuit board. Power semiconductor chips are contacted on the power metal layer. A substrate is secured to the heat sink and is embodied with a circuit structure for contacting the power semiconductor chips.
Abstract:
A power semiconductor module is presented. The power semiconductor module has a substrate, a composite film, and a power semiconductor component between the substrate and the composite film. The composite film has a thin circuit-structured logic metal layer and a thick circuit-structured power metal layer and between them a thin electrically insulating plastic film. The composite film includes contact nubs, which provide bonding to the power semiconductor component. Feedthrough holes are provided between the logic metal layer and the power metal layer. The plastic film in the region of the respective through-plated hole includes a recess in a region that is free of the logic metal layer. A segment of a flexible thin wire extends through the free region of the logic metal layer and through the recess in the plastic film and is bonded to the logic metal layer and the power metal layer by means of bonding sites.
Abstract:
A substrate, preferably constructed of a ductile material and a tool having the desired shape of the resulting device for contacting contact pads on a test device is brought into contact with the substrate. The tool is preferably constructed of a material that is harder than the substrate so that a depression can be readily made therein. A dielectric (insulative) layer, that is preferably patterned, is supported by the substrate. A conductive material is located within the depressions and then preferably lapped to remove excess from the top surface of the dielectric layer and to provide a flat overall surface. A trace is patterned on the dielectric layer and the conductive material. A polyimide layer is then preferably patterned over the entire surface. The substrate is then removed by any suitable process.
Abstract:
A circuit structure for a package substrate or a circuit board is provided. The circuit structure has a dielectric layer with an upper surface and a lower surface, at least a first line and at least a second line. The first line is disposed on the dielectric layer on which a base of the first line is aligned with the upper surface. In addition, the second line is disposed on the dielectric layer on which a base of the second line is embedded below the upper surface. Since the second line is embedded into the dielectric layer, the distance with a reference plane is reduced and the crosstalk between the signals is further effectively reduced.
Abstract:
A layered heater is provided that includes at least one resistive layer having a resistive circuit pattern, the resistive circuit pattern defining a length, a width, and a thickness, wherein the thickness varies along the length of the resistive circuit pattern and/or the width of the resistive circuit pattern for a variable watt density. The present disclosure also provides layered heaters having a resistive circuit pattern with a variable thickness along with a variable width and/or spacing of the resistive circuit pattern in order to produce a variable watt density.
Abstract:
A method of forming a flexible conductive strip includes: molding a continuous, flexible base of an electrically insulating thermoplastic resin, while forming channels in a surface of the base; at least partially filling the formed channels with a flowable, electrically conductive composition; and then stabilizing the flowable composition in the channels to form a pattern of stable, electrically conductive traces within the channels. A method of forming a flexible circuit board having loop-engageable touch fastener elements includes: molding a continuous, flexible base from an electrically insulating thermoplastic resin, while forming a field of stems integrally molded with and extending from a first side of the base; applying a conductive material to the base to form a pattern of electrically conductive traces in accordance with a circuit design; and forming loop-engageable heads on the stems.
Abstract:
An electronic board includes: a substrate; and a wiring pattern provided on the substrate and having a part that forms a resistance element, the part having wiring specifications that are different from those of other parts.
Abstract:
A method and structures are provided for implementing customizable dielectric printed circuit card traces. A void is defined near selected signal traces. The void is then filled with a dielectric material having a predefined dielectric property. The dielectric material is selected to alter at least one predefined electrical property of the selected signal traces, such as, coupling, propagation delay and attenuation. In one embodiment, an outer layer of a printed circuit card includes a plurality of signal traces and a mating circuit card layer including a plurality of matching signal traces is attached to the outer layer of the printed circuit card to create a cavity near selected signal traces. The cavity is filled with the selected dielectric material. In another embodiment, dielectric material is selectively removed near signal traces on an outer layer of the printed circuit card to define a void near selected signal traces.
Abstract:
A film having a recess provided in a surface of the film is provided. The recess included a first portion and a second portion connected with the first portion. The second portion is deeper than the first portion. The recess in the film is filled with a conductive paste so as to fill the first portion and the second portion of the recess with a first portion and a second portion of the conductive paste, respectively. Then, the surface of the film is attached onto a surface of a substrate. The conductive paste is transferred to the surface of the substrate by removing the film from the substrate so as to transfer the first portion and the second portion of the conductive paste to the surface of the substrate. The transferred first portion and the transferred second portion of the conductive paste are baked to provide a first portion and the second portion of a conductor pattern, respectively. An insulating layer is provided on the conductor pattern. Then, the substrate, the insulating layer, and the conductor pattern are cut along a first border extending across the second portion of the conductor pattern, thus providing an electronic device. In this method, the side electrode is formed simultaneously to the cutting of the substrate.
Abstract:
This invention provides a multilayer printed wiring board having flat via holes. This is a multilayer printed wiring board formed by alternately laminating multiple metal foils and insulating layers, in which an interlayer connection via pad provided in a first insulating layer, a wiring circuit and an interlayer connection via bottom pad of a second insulating layer are provided in the same surface layer and at least the interlayer connection via pad and the interlayer connection via bottom pad of the second insulating layer have the same thickness.