Abstract:
A semiconductor device includes a printed circuit board in a peripheral portion of a housing portion of a case in which a laminated substrate is housed. A terminal block holding control terminals from which control signals are outputted to the printed circuit board is disposed over the printed circuit board. A gate electrode of a semiconductor chip and the printed circuit board are electrically connected by a wire.
Abstract:
A printed circuit board includes a busbar applied to a surface of the printed circuit board. The busbar is configured as a sequence of sheet metal conductor pieces which are connected to each other in an electrically conducting manner. The respective ends of the conductor pieces may have a rounded portion and a corresponding cutout, or a point and a corresponding indentation. An electrical controller, a motor vehicle and a printed circuit board configuration having at least one printed circuit board are also provided.
Abstract:
An electronic component unit and a wire harness are provided with a bus bar plate. The bus bar plate is provided with a metallic bus bar that is built in a resin material, and including a through-hole in which a terminal of a relay mounted on a mounting surface is soldered. The through-hole is provided with a bus bar through-hole which penetrates the bus bar, and a resin material through-hole which penetrates the resin material and is formed to be larger than the bus bar through-hole to expose the surface of the bus bar. When an inner diameter of the bus bar through-hole is defined as r and an inner diameter of the resin material through-hole is defined as R, 1.5r≦R is satisfied.
Abstract:
A printed circuit board for selectively communicating power from a power source to a use has an input bus for receiving a power supply. A transistor is connected to the input bus and is positioned on one side of the input bus in a first direction. An output bus is connected to the transistor on an opposed side of the transistor relative to the input bus. The transistor is intermediate at the first input and output buses in the first dimension. A power supply system is also disclosed.
Abstract:
A bus bar includes a bus bar body and a spacer provided on the bus bar body, the spacer being an insulator. The bus bar body includes a through hole portion that allows a part of a fixing member for fixing the bus bar body to be inserted therethrough. The spacer includes a head portion and a body portion extending therefrom. When the spacer is provided on the bus bar body, the head portion covers at least part of a peripheral edge region of an end opening of the through hole and the body portion covers an inner peripheral surface of the through hole portion. An outer peripheral surface of the body portion of the spacer is fixedly adhered to the inner peripheral surface of the through hole portion so that resistance occurs when the spacer moves toward the head portion side relative to the bus bar body.
Abstract:
Described is a rotating electrical machine integrating an electronic module comprising a printed circuit, a plurality of electronic power and signal components positioned on the components side of the printed circuit, a plurality of conductor tracks, positioned on the welding side opposite the components side of the printed circuit, which implement the direct electrical connections between the electronic power components; the electronic power and signal components are in contact through a filler with the cap of the electrical machine for allowing an optimum dispersal of the heat generated by them, the contact being guaranteed by elastic elements which press on a support in which the electronic module is housed.
Abstract:
In some embodiments, a system includes a first portion, a second portion, and a third portion of an electrical conductor. Each portion is electrically coupled to the other two portions. The first, second, and third portions are configured such that substantially no current induced in and/or supplied to the first portion is conducted to the third portion of the electrical conductor. The third portion of the electrical conductor is also thermally coupled to the first and second portions of the electrical conductor. The third portion of the electrical conductor is configured to transfer thermal energy from the first portion of the electrical conductor to an edge portion of the laminated composite assembly.
Abstract:
A vehicle includes a power electronics unit for converting energy between a DC circuit and a polyphase machine, wherein the power electronics unit has a power module, a driver board, and a control board. The power electronics unit has two DC current rails, wherein the DC circuit can be connected to the same, and the power electronics unit has phase current rails, wherein the polyphase machine can be connected to the same. The number of the phase current rails corresponds to the number of the phases of the polyphase machine. The arrangement of the power module, the driver board, and the control board corresponds to a stacked or sandwiched construction, the phase current rails are electrically connected to the power module, and the control board has a passage for each of the phase current rails, wherein one phase current rail is fed through each passage.
Abstract:
An improved bus apparatus includes a generally rigid substrate and a conductor apparatus. The conductor apparatus includes a number of bus elements that are embedded within the substrate and which are electrically connected with connection elements that each have an end that is situated external to the substrate. Additional connection elements extend through the substrate and are connectable with loads. Circuit interrupters and other devices are connectable with pairs of the connector elements, wherein one connector element is connected with a line and wherein another connector element is connected with a load. The bus apparatus is formed by receiving the bus elements in channels formed in layers of a thermally conductive and electrically insulative material, and the layers are bonded together with the use of a bonding material to cause the bus elements to become laminated within the interior of the substrate.
Abstract:
To achieve efficient heat spreading and heat releasing by using a metal core of a circuit board, a terminal block includes an insulating block body and terminals. At least one of the terminals is provided with terminal portions for a connection with a circuit board. The terminal portions are inserted into respective through holes of the circuit board, the circuit board having a pattern circuit at a surface layer thereof and a conductive metal core at an intermediate portion in a thickness direction, so that heat of the metal core or of both the metal core and the pattern circuit is absorbed and transferred to the terminals. A bus-bar block includes an insulating block body and several parallel bus-bars with different lengths. Terminal portions at a tip end of the bus-bars are inserted, near heat-generating component on the circuit board, into the through holes of the circuit board.