Abstract:
A method and system for transporting a fluid, gas, semi-solid, cryogen, or particulate matter, or combination thereof, between a three-dimensional structure and a substantially two-dimensional structure is disclosed. A system and method for electrically coupling a three-dimensional structure to a substantially two dimensional structure is also disclosed.
Abstract:
An etched dielectric film having an adhered etch stop layer for use in microfluidic devices. Channels, recesses, and other features can be etched into the films to make them suitable for use in microfluidic devices.
Abstract:
A micro-machined nozzle includes a substrate having a hole formed on a first side that extends partially through a thickness dimension of the substrate and a nozzle orifice formed on a second opposite side that communicates with the hole. The nozzle orifice has at least a portion of its interior wall serrated. A method of fabricating a micro-machined nozzle includes the steps of etching a first side of a silicon substrate to form a hole that extends partially through a thickness dimension of the substrate and etching a second opposite side of the silicon substrate to form a serrated nozzle orifice that communicates with the hole.
Abstract:
Microfluidic devices having a plurality of functional features for performing one or more fluidic operations in parallel are provided. Reagents, samples or other fluids common to multiple functional features (“common fluids”) may be input into a microfluidic device or system through one or more distributing inputs that divide and distribute the common fluids as desired. The use of a multi-layer fabrication technique allows multiple distributing inputs to distribute to multiple functional features in a microfluidic device without undesirable fluid channel intersections.
Abstract:
Micro channel array devices drawn from a bulk preform having an array of components to reduce the cross section. The reduced cross section fiber like structure is cut to produce individual arrays of small scale. End caps are drawn and optionally micro machined. The end caps are used to provide input and output ports and other structures for use with the micro channel arrays. A micro channel array may be used with different end caps for analysis and may form a lab on a chip or a component thereof.
Abstract:
Methods, manufactures, machines and compositions are described for nanotransfer and nanoreplication using deterministically grown sacrificial nanotemplates. A method includes depositing a catalyst particle on a surface of a substrate to define a deterministically located position; growing an aligned elongated nanostructure on the substrate, an end of the aligned elongated nanostructure coupled to the substrate at the deterministically located position; coating the aligned elongated nanostructure with a conduit material; removing a portion of the conduit material to expose the catalyst particle; removing the catalyst particle; and removing the elongated nanostructure to define a nanoconduit.
Abstract:
A method of joining a workpiece and a microstructure by light exposure, a microstructure obtainable by the method comprising a workpiece joined thereto, means thereto and use thereof; in particular a microstructure-forming composition comprising a light-sensitive, structure-forming material comprising one or more photo resist materials which are sensitive to preferably UV-light, and a light-absorbing material comprising one or more light-absorbing substances absorbing preferably IR light and being in an amount sufficient to produce heat upon exposure to said absorbed light; a microstructure-forming preparation comprising such composition; a method of producing a microstructure on a substrate; and a microstructure obtainable by the method; a method of joining a workpiece and a microstructure, a microstructure obtainable by the method comprising a workpiece joined thereto, e.g. for producing closed micro flow channels in a micro flow system; and use of such a microstructure, e.g. in lab-on-chip applications, in point-of-care systems, in high-through-put screening systems, preferably in systems for screening active compounds in fluids, in particular biological fluids.
Abstract:
A method for producing a corrosion-resistant channel in a wetted path of a silicon device enables such device to be used with corrosive compounds, such as fluorine. A wetted path of a MEMS device is coated with either (1) an organic compound resistant to attack by atomic fluorine or (2) a material capable of being passivated by atomic fluorine. The device is then exposed to a gas that decomposes into active fluorine compounds when activated by a plasma discharge. One example of such a gas is CF4, an inert gas that is easier and safer to work with than volatile gases like ClF3. The gas will passivate the material (if applicable) and corrode any exposed silicon. The device is tested in such a manner that any unacceptable corrosion of the wetted path will cause the device to fail. If the device operates properly, the wetted path is deemed to be resistant to corrosion by fluorine or other corrosive compounds, as applicable.
Abstract:
A microfluidic chip formed with multiple fluid channels terminating at a tapered electrospray ionization tip for mass spectrometric analysis. The fluid channels may be formed onto a channel plate that are in fluid communication with corresponding reservoirs. The electrospray tip can be formed along a defined distal portion of the channel plate that can include a single or multiple tapered surfaces. The fluid channels may terminate at an open-tip region of the electrospray tip. A covering plate may substantially enclose most portions of the fluid channels formed on the channel plate except for the open-tip region. Another aspect of the invention provides methods for conducting mass spectrometric analysis of multiple samples flowing through individual fluid channels in a single microfluidic chip that is formed with a tapered electrospray tip having an open-tip region.
Abstract:
The present invention provides multi-layer microfluidic systems, by providing additional substrate layers, e.g., third, fourth, fifth and more substrate layers, mated with the typically described first and second layers. Microfabricated elements, e.g., grooves, wells and the like, are manufactured into the surfaces between the various substrate layers. These microfabricated elements define the various microfluidic aspects or structures of the overall device, e.g., channels, chambers and the like. In preferred aspects, a separate microscale channel network is provided between each of the substrate layers.