Abstract:
Polymers, methods of use thereof, and methods of decomposition thereof, are provided. One exemplary polymer, among others, includes, a photodefinable polymer having a sacrificial polymer and a photoinitiator.
Abstract:
A micro-structure is manufactured by patterning a sacrificial film, forming an inorganic material film on the pattern, providing the inorganic material film with an aperture, and etching away the sacrificial film pattern through the aperture to define a space having the contour of the pattern. The patterning stage includes the steps of (A) forming a sacrificial film using a composition comprising a cresol novolac resin and a crosslinker, (B) exposing patternwise the film to first high-energy radiation, (C) developing, and (D) exposing the sacrificial film pattern to second high-energy radiation and heat treating for thereby forming crosslinks within the cresol novolac resin.
Abstract:
Polymers, methods of use thereof, and methods of decomposition thereof, are provided. One exemplary polymer, among others, includes, a photodefinable polymer having a sacrificial polymer and a photoinitiator.
Abstract:
Microelectronic substrate comprising at least: a support layer, a top layer comprising at least one semiconductor, a layer comprising at least one organic material able to be etched selectively with respect to the semiconductor of the top layer by using a dry etching, and disposed between the support layer and the top layer, and also comprising one or more portions of dielectric material the hardness of which is greater than that of the organic material, disposed in the layer of organic material, and the thickness of which is substantially equal to that of the layer of organic material.
Abstract:
Micro-Electro-Mechanical System (MEMS) structures, metrology structures and methods of manufacture are disclosed. The method includes forming one or metrology structure, during formation of a device in a chip area. The method further includes venting the one or more metrology structure after formation of the device.
Abstract:
MEMS devices (such as interferometric modulators) may be fabricated using a sacrificial layer that contains a heat vaporizable polymer to form a gap between a moveable layer and a substrate. One embodiment provides a method of making a MEMS device that includes depositing a polymer layer over a substrate, forming an electrically conductive layer over the polymer layer, and vaporizing at least a portion of the polymer layer to form a cavity between the substrate and the electrically conductive layer. Another embodiment provides a method for making an interferometric modulator that includes providing a substrate, depositing a first electrically conductive material over at least a portion of the substrate, depositing a sacrificial material over at least a portion of the first electrically conductive material, depositing an insulator over the substrate and adjacent to the sacrificial material to form a support structure, and depositing a second electrically conductive material over at least a portion of the sacrificial material, the sacrificial material being removable by heat-vaporization to thereby form a cavity between the first electrically conductive layer and the second electrically conductive layer.
Abstract:
Embodiments according to the present invention relate generally to PAG bilayer and PAG-doped unilayer structures using sacrificial polymer layers that incorporate a photoacid generator having a concentration gradient therein. Said PAG concentration being higher in a upper portion of such structures than in a lower portion thereof. Embodiments according to the present invention also relate to a method of using such bilayers and unilayers to form microelectronic structures having a three-dimensional space, and methods of decomposition of the sacrificial polymer within the aforementioned layers.
Abstract:
A method for manufacturing a three-dimensional structure includes forming a first structure having a relief pattern on a substrate, forming a sacrifice layer on the first structure such that the sacrifice layer can be filled in a concave part of the first structure and the sacrifice layer can cover a surface of a convex part of the first structure on a side opposite to the substrate, forming a second structure having a relief pattern on the sacrifice layer, and a fourth step of removing the sacrifice layer from between the first structure and the second structure, and thereby bringing the second structure into contact with the surface of the first structure.
Abstract:
A micro-structure is manufactured by patterning a sacrificial film, forming an inorganic material film on the pattern, providing the inorganic material film with an aperture, and etching away the sacrificial film pattern through the aperture to define a space having the contour of the pattern. The patterning stage includes the steps of (A) forming a sacrificial film using a composition comprising a cresol novolac resin and a crosslinker, (B) exposing patternwise the film to first high-energy radiation, (C) developing, and (D) exposing the sacrificial film pattern to second high-energy radiation and heat treating for thereby forming crosslinks within the cresol novolac resin.
Abstract:
Polymers, methods of use thereof, and methods of decomposition thereof, are provided. One exemplary polymer, among others, includes, a photodefinable polymer having a sacrificial polymer and a photoinitiator.