Abstract:
An apparatus may include a first support covered with at least one ALD precursor and/or at least one MLD precursor, and a second support covered with at least one ALD precursor and/or at least one MLD precursor which is/are complementary to the ALD precursor and/or MLD precursor of the first support. The first support is at least partly joined to the second support by an atomic bond between the ALD precursor of the first support and the ALD precursor of the second support or between the MLD precursor of the first support and the MLD precursor of the second support in such a way that an ALD layer or an MLD layer is formed.
Abstract:
According to an embodiment, a MEMS device includes a deflectable membrane including a first plurality of electrostatic comb fingers, a first anchor structure including a second plurality of electrostatic comb fingers interdigitated with a first subset of the first plurality of electrostatic comb fingers, and a second anchor structure including a third plurality of electrostatic comb fingers interdigitated with a second subset of the first plurality of electrostatic comb fingers. The second plurality of electrostatic comb fingers are offset from the first plurality of electrostatic comb fingers in a first direction and the third plurality of electrostatic comb fingers are offset from the first plurality of electrostatic comb fingers in a second direction, where the first direction is different from the second direction.
Abstract:
In an example of a method for making a nano-structure, an aluminum layer is partially anodized to form a porous anodic alumina structure. The aluminum layer is positioned on an oxidizable material layer. The porous anodic alumina structure is exposed to partial anisotropic etching to form tracks within the porous anodic alumina structure. A remaining portion of the aluminum layer is further anodized to form paths where the tracks are formed. The oxidizable material layer is anodized to from an oxide, where the oxide grows through the paths formed within the porous anodic alumina structure to form a set of super nano-pillars.
Abstract:
A first ion rich dielectric substrate with a patterned dielectric barrier and a oxidizable metal layer is anodically bonded to a second ion rich dielectric substrate. To bond the substrates, the oxidizable metal layer is oxidized. The dielectric barrier may inhibit the migration of these ions to the bondline, which might otherwise poison the bond strength. Accordingly, when joining the two substrates, a strong bond is maintained between the wafers.
Abstract:
A MEMS gyroscope is disclosed herein, wherein the MEMS gyroscope comprised a magnetic sensing mechanism and a magnetic source that is formed at the proof-mass, wherein the magnetic sensing mechanism comprises an integrated pickup coil of a fluxgate. A magnetic shield is provided in the vicinity of the magnetic source.
Abstract:
An electroplating method that includes: a) contacting a first substrate with a first article, which includes a substrate and a conformable mask disposed in a pattern on the substrate; b) electroplating a first metal from a source of metal ions onto the first substrate in a first pattern, the first pattern corresponding to the complement of the conformable mask pattern; and c) removing the first article from the first substrate, is disclosed. Electroplating articles and electroplating apparatus are also disclosed.
Abstract:
Some embodiments of the present invention provide processes and apparatus for electrochemically fabricating multilayer structures (e.g. mesoscale or microscale structures) with improved endpoint detection and parallelism maintenance for materials (e.g. layers) that are planarized during the electrochemical fabrication process. Some methods involve the use of a fixture during planarization that ensures that planarized planes of material are parallel to other deposited planes within a given tolerance. Some methods involve the use of an endpoint detection fixture that ensures precise heights of deposited materials relative to an initial surface of a substrate, relative to a first deposited layer, or relative to some other layer formed during the fabrication process. In some embodiments planarization may occur via lapping while other embodiments may use a diamond fly cutting machine.
Abstract:
A MEMS gyroscope is disclosed herein, wherein the MEMS gyroscope comprised a magnetic sensing mechanism and a magnetic source that is associated with the proof-mass. The magnetic sensing mechanism comprises multiple magnetic field sensors that are designated for sensing the magnetic field from a magnetic source so as to mitigate the problems caused by fabrication.
Abstract:
A method of using a MEMS gyroscope is disclosed herein, wherein the MEMS gyroscope comprised a magnetic sensing mechanism. A magnetic field is generated by a magnetic source, and is detected by a magnetic sensor. The magnetic field varies at the location of the magnetic sensor; and the variation of the magnetic field is associated with the movement of the proof-mass of the MEMS gyroscope. By detecting the variation of the magnetic field, the movement and thus the target angular velocity can be measured.
Abstract:
An electroplating method that includes: a) contacting a first substrate with a first article, which includes a substrate and a conformable mask disposed in a pattern on the substrate; b) electroplating a first metal from a source of metal ions onto the first substrate in a first pattern, the first pattern corresponding to the complement of the conformable mask pattern; and c) removing the first article from the first substrate, is disclosed. Electroplating articles and electroplating apparatus are also disclosed.