Abstract:
A composition comprising a diatom frustule and a metal coating, and a method for making the same, are disclosed herein. The metal coating may comprise a metal film or metal nanoparticles, which may be attached to the surface via a linker. The composition has a surface coverage ratio of from about 1% to about 100%. The composition may also comprise an antibody. Also disclosed is a method for using the composition comprising contacting the composition with a target molecule, exposing the composition to light, and measuring the resulting Raman scattering.
Abstract:
A device for recording an absorption spectrum of a fluid has a radiation source (1) that emits a radiation in a spectral range along a beam path (11), a measuring path (5), along which the radiation passes through the fluid and arranged in the beam path, a tunable Fabry-Perot interferometer (7), arranged in the beam path and transmitting radiation in the spectral range as a displaceable bandpass filter, and a detector (9, 35) measuring the intensity of the radiation in the spectral range. An etalon (3) is arranged for spectral modulation of radiation in the beam path and has a plurality of transmission maxima (17) in the spectral range. The bandpass filter, formed by the Fabry-Perot interferometer (7), is displacable across the spectral range such that spectral modulation of the radiation by the etalon (3) is measured by the detector (9, 35) as a modulation of radiation intensity over time.
Abstract:
A system uses number of analytical devices such as an electron microscope a Raman microscope, an ion beam column and a scanning probe microscope for sample analysis concurrent, consecutive or with the mutual correlation of the analysis performed by the different devices in the same sample area using the connection of the Raman microscope optical objective lens and objective manipulator, that significantly reduces time needed for analyzing by Raman microscope together with other devices and maintains high quality of the sensed signals comparable to stand alone analytical devices.
Abstract:
An optical system comprising: a light source; a photodetector; a first light-receiving system for causing the photodetector to receive first reflected light with a first angle of reflection from a surface; and a second light-receiving system for causing the photodetector to receive second reflected light with a second angle of reflection, different from the first angle of reflection, from the surface is provided. Here, an incident area on the surface, in which light generating the first reflected light is incident, is spaced apart from an exiting area on the surface, which light, to be incident on the photodetector from the surface via the second light-receiving system, exits.
Abstract:
A biological fluid analysis system and method for measuring optical characteristics of a sample of biological fluid using a commercially available portable computing device having a camera, such as a smart phone. The system includes a scope, a case that attaches to the portable computing device, and a software application that runs on the portable computing device. Some embodiments of the invention include a sample slide having a viewing chamber that can be filled with a biological fluid to be analyzed by the biological fluid analysis system. The system may be adapted to analyze cow's milk to estimate the number of somatic cells per unit volume contained in the milk using a reagent that stains the somatic cells so that they will fluoresce when excited by light with a particular wavelength, with the light source in the scope being adapted to generate light of that particular wavelength.
Abstract:
To improve sensitivity of a defect inspection, it is required to decrease influence of excessive diffraction from a spatial filter. Further, it is preferable to secure signal intensity from defects and particles as much as possible, while the influence of the excessive diffraction is decreased as much as possible. The present invention is characterized in setting a width of a spatial filter surface such that an unnecessary image caused by diffraction, that is, an intensity of the excessive diffraction is sufficiently small with respect to an intensity of a desired image. In the present invention, an SN ratio that is an index for deciding a width of the spatial filter is calculated from a region subjected to the influence of the excessive diffraction in an inspection image, and a width of a shield unit of the spatial filter is set so as to maximize the SN ratio.
Abstract:
Polymers and copolymers of polymerizable fluorescent compounds of 7-hydroxycoumarin such as Ethyl-2-methacrylate Umbelliferone-4-acetate are provided. In addition, a sensor comprising this polymer notably for detecting and/or assaying nitrated and organophosphorus compounds, explosives, and toxic compounds is provided.
Abstract:
Methods and systems for designing a binary spatial filter based on data indicative of a desired exposure condition to be emulated by an inspection system, and for implementing the binary spatial filter in an optical path of the inspection system, thereby enabling emulation of the desired exposure condition by interacting a light beam of the inspection system with the binary spatial filter. The present method and systems enable on-the-fly and on-demand design and implementation/generation of spatial filters for use in inspection systems.
Abstract:
An optical system for detecting contaminants and defects on a test surface includes an improved laser system for generating a laser beam and optics directing the laser beam along a path onto the test surface, and producing an illuminated spot thereon. A detector and ellipsoidal mirrored surface are also provided with an axis of symmetry about a line perpendicular to the test surface. In one embodiment, an optical system for detecting anomalies of a sample includes the improved laser system for generating first and second beams, first optics for directing the first beam of radiation onto a first spot on the sample, second optics for directing the second beam onto a second spot on the sample, with the first and second paths at different angles of incidence to the sample surface. In another embodiment, a surface inspection apparatus includes an illumination system configured to focus beams at non-normal incidence angles.
Abstract:
A fluorescence observation method of the present invention for detecting plural types of fluorescence emitted from two or more kinds of fluorescent molecules includes: subjecting each of the two or more kinds of fluorescent molecules to multi-photon excitation by exciting light having an exciting wavelength equal to or shorter than 700 nm in a visible region, to generate fluorescence upon making use of an absorption wavelength band in a deep ultraviolet region of each of the two or more kinds of fluorescent molecules; and simultaneously detecting plural types of fluorescence generated on a shorter-wavelength side or on both of the shorter-wavelength side and a longer-wavelength side of the exciting wavelength of the exciting light.