Abstract:
An apparatus for casting a patterned surface on both sides of an opaque web. The apparatus includes a first patterned roll, a second pattered roll, and a means for rotating the first and second patterned rolls such that their patterns are transferred to opposite sides of the opaque web while it is in continuous motion. During this process, their patterns are maintained in continuous registration to within at least 100 micrometers.
Abstract:
A touch-sensor structure includes a substrate having a plurality of grooves formed thereon. A plurality of first axial electrode strips are disposed in the grooves individually. A plurality of second axial electrode strips are disposed on the substrate and intersect with the first axial electrode strips. An insulating layer fills in the grooves and is disposed at the intersections of the first and second axial electrode strips. Furthermore, the manufacturing method of the touch-sensor structure is provided. The insulating layer is disposed in the grooves of the substrate without a protuberant height on the substrate. Therefore, it can overcome a breakage issue in conventional conductive bridges.
Abstract:
An article includes a patterned substrate including a substrate surface with an inorganic electro-conductive trace adjacent thereto (wherein the substrate and the inorganic material of the trace each has an index of refraction), and a layer including a polymerized acrylate matrix adjacent to at least a portion of the surface of the substrate and the inorganic electro-conductive trace, wherein the layer has an index of refraction that is within ±10% of the average of the indices of refraction of the substrate and the inorganic material of the trace.
Abstract:
The invention discloses a method of fabricating a capacitance touch panel module. The method includes providing a substrate with a touching area and a peripheral area; forming a plurality of first conductive patterns on the substrate along a first orientation, a plurality of second conductive patterns along a second orientation, and a plurality of connecting portions in the touching area; forming a plurality of insulated protrusions, in which each insulated protrusion covers one connecting portion; forming an insulated frame on the peripheral area; and forming a bridging member on each insulated protrusion.
Abstract:
A transparent conductor includes a transparent substrate, a conductive mesh, and an insulating protective layer, which are laminated in that order, wherein the conductive mesh is formed on the transparent substrate, and a surface of the insulating protective layer away from the transparent substrate is flat. Such transparent conductor avoids the use of indium tin oxide, thus the cost of the transparent conductors is lower. A method of preparing the transparent conductor is also provided.
Abstract:
A printed circuit board includes a first outer electrically conductive pattern layer, a first insulation layer, a first inner electrically conductive pattern layer, a connection adhesive sheet, a second inner electrically conductive layer, a second insulation layer, a second outer electrically conductive pattern layer, and a identification mark, which are arranged in that order. The first outer electrically conductive pattern layer includes many first gold fingers. The second outer electrically conductive pattern layer includes many second gold fingers. The blind hole corresponds to the identification mark. The first outer electrically conductive pattern layer, the second outer electrically conductive pattern layer, and the at least one identification mark are simultaneously formed.
Abstract:
A method of manufacturing an electronic component includes forming a resin layer over an underlying layer, pressing a conductor plate including a pattern formed on one major surface thereof against the resin layer, and embedding the pattern in the resin layer, and performing polishing, Chemical Mechanical Polishing, or cutting by the use of a diamond bit on another major surface of the conductor plate until the resin layer appears, and leaving the pattern in the resin layer as a conductor pattern.
Abstract:
Disclosed herein are a touch panel and a method for manufacturing the same, the touch panel including: a transparent substrate; a photosensitive ink layer patterned on the transparent substrate and having electric conductivity; and electrode patterns formed at corresponding positions on the patterned photosensitive ink layer, and the method including: preparing a transparent substrate; coating a photosensitive ink having electric conductivity on the transparent substrate to form a photosensitive ink layer; patterning the photosensitive ink layer; and forming electrode patterns on the patterned photosensitive ink layer.
Abstract:
A light emitting module includes a circuit board having a plurality of reflective portions arranged in one direction and connection portions connecting the plurality of reflective portions, light emitting devices mounted on the plurality of reflective portions, and lens units disposed to cover the light emitting devices within boundaries of surfaces, of the plurality of reflective portions, on which the light emitting devices are mounted. A width of each of the connection portions in the other direction, perpendicular to the one direction thereof, is smaller than a diameter of each of the lens units, thus reducing a generation of a dark portion.
Abstract:
Disclosed herein are a raw glass plate for manufacturing a touch panel and a method of manufacturing a touch panel using the raw glass plate. The raw glass plate includes a unit substrate region divided into an active region and a non-active region that is an edge portion of the active region; electrodes formed on the active region of the unit substrate region; wirings that are formed on the non-active region of the unit substrate region and are electrically connected to the electrodes; and a guard line that is formed outside a position at which the wirings are formed, on the non-active region of the unit substrate region in a longitudinal direction of the wirings.