Abstract:
A method of providing thermal vias in a printed circuit board that includes one or more layers of board material is disclosed. The vias provide for conducting heat from components mounted on the board. One or more holes (4) are provided in a printed circuit board that may include several metal layers. A metal ball (6) is inserted into each hole and subjected to pressure such as to deform said ball, and tightly fixating the resultant slug against the wall (5) of said hole. The deformed ball or slug fixed in the hole, which may have a metallised inner surface, functions to conduct heat and/or electricity between a metallised topside (2) and bottom side (3) of the printed circuit board and also between intermediate metallised layers in the case of a multi-layer board.
Abstract:
A production method of a wired circuit board that can prevent corrosion of a first thin metal film inwardly of a conductor layer, which is due to the forming of an undercut portion caused by a skirt portion of a plating resist, to prevent the peeling of a wiring circuit pattern. An insulating base layer 1 is prepared, first, and, then, a first thin metal film 2 is formed on the insulating base layer 1. Then, a plating resist 3 is formed in a reversal pattern to a wiring circuit pattern 4 on the first thin metal film 2, and a conductor layer 6 is formed in the wiring circuit pattern 4 on the first thin metal film 2 exposed form the plating resist 3. Thereafter, the plating resist 3 is removed and, then, a second thin metal film 8 is formed on the conductor layer 6 and first thin metal film 2. Thereafter, the second thin metal film 8 is removed. Then, all portions of the first thin metal layer 2, except portions thereof where the conductor layer 6 is formed, are removed. The flexible wired circuit board is produced by the processes described above.
Abstract:
A thin type printed circuit board with an enclosed capacitor of a large capacitance. The printed circuit board includes metal sheet 11 having roughed surface presenting micro-irregularities, a dielectric film for capacitor 12 covering the surface of the metal sheet, and a first electrically conductive layer of electrically conductive resin 13 covering the surface of the dielectric film. A second electrically conductive layer 14 is provided on the surface of the first electrically conductive layer in a region of via for cathode side connection 18. The metal sheet and the first and second electrically conductive layers are encapsulated by resin 15. The via for cathode side connection 18, obtained on boring through the resin 15 until reaching the second electrically conductive layer 14, is coated with an electrode 20. A via for anode side connection 19 obtained on boring through the resin 15 is coated with an electrode 21 that is insulated from the second electrically conductive layer 13 by the resin 15.
Abstract:
An information handling system (e.g., computer, server, etc.) Utilizing at least one circuitized substrate assembly of robust construction and possessing enhanced operational capabilities. The substrate assemblies include a substrate having at least one opening which is substantially filled with a conductive paste prior to bonding. Once bonded, the paste is also partially located within the other opening to provide an effective electrical connection therewith.
Abstract:
A multilayer wiring board assembly, a multilayer wiring board assembly component, and a method of manufacture thereof. The multilayer wiring board assembly is formed by laminating together a plurality of multilayer wiring board assembly components having a flexible resin film with a copper foil bonded to one surface and an adhesive layer bonded to the other surface, opening a through hole in the copper plated resin film through the cooper foil, resin film, and the adhesive layer, and filling the through hole with a conductive paste projecting from the adhesive layer and laterally extending beyond through hole opening of the copper foil.
Abstract:
A wiring board provided with a resistor comprises: an insulating substrate having a surface; wiring patterns formed on the surface, the wiring patterns including first and second electrodes spaced from each other by a certain distance; a first resistor (horizontal type resistor) formed on the surface, the first resistor having respective ends connected with the first and second electrodes, respectively; the wiring patterns further including a third electrode, occupying a first plane area on the surface; a second resistor (vertical type resistor) formed on the third electrode; a fourth electrode formed on the second resistor; and the second resistor and the fourth electrode being located in a second plane area within the first plane area.
Abstract:
The present invention relates to a method of forming a conductive pattern in accordance with an object pattern onto a substrate. In the method, the pattern first defined as the numerical image values at its coordinate locations and then, using these numerical values, the final pattern is recorded with the help of reactive agents capable of undergoing a change of state. The state-changing reactive agents is applied onto each point of said substrate in an amount located and controlled by said numerical value of the respective point in the object pattern, whereupon each one of said amounts of said applied agents is subjected to a reaction causing a change of state. The invention can be implemented to product printed-circuit boards and similar conductive patterns.
Abstract:
A method of forming an electrically-conductive pattern includes selectively electroplating the top portions of a substrate that corresponds to the pattern, and separating the conductive pattern from the substrate. The electroplating may also include electrically connecting the conductive pattern to an electrical component. Conductive ink, such as ink including carbon particles, may be selectively placed on the conductive substrate to facilitate plating of the desired pattern and/or to facilitate separation of the pattern from the substrate. An example of a conductive pattern is an antenna for a radio-frequency identification (RFID) device such as a label or a tag. One example of an electrical component that may be electrically connected to the antenna, is an RFID strap or chip.
Abstract:
A wiring substrate, in which a wiring stacked portion including a conductor layer and a resin layer is stacked on a principal face of a core substrate including a substantially cylindrical through hole conductor in a through hole extending therethrough and a filling material filling the hollow portion of said through hole, comprising: a cover-shaped conductor portion covering an end face of said through hole just over a principal face of said core substrate and connected to said through hole conductor; and an initial conductor layer provided in said wiring stacked portion and across at least one of said resin layer from sad cover-shaped conductor layer, wherein a connection portion composed of via conductors buried in said resin layer brings said cover-shaped conductor portion and said internal conductor layer into conduction, and said via conductors composing said connection portion are provided not above said through hole.
Abstract:
An improved optical module mounted body is disclosed. The optical module mounted body comprising: a mounting board having a mounting surface with a plurality of holes formed thereon; an optical module placed on the mounting surface; and a securing member configured to secure the optical module, the securing member including an upper portion, a plurality of legs extending from the upper portion and a plurality of engagement portions formed at ends of the plurality of legs, wherein the optical module is held between the mounting board and the securing member such that the upper portion of the securing member abuts on an upper surface of the optical module, and wherein the plurality of legs are inserted in the plurality of holes, the plurality of engagement portion engaging with the mounting board.