Abstract:
A fixing member is spaced from a head actuator by a predetermined distance. A flexible printed circuit board extends at least from the head actuator to the fixing member. The flexible printed circuit board is superposed on the surface of the fixing member. A viscoelastic layer and a protecting layer are overlaid on the surface of the flexible printed circuit board. A clip clips all the fixing member, the flexible printed circuit board, the viscoelastic layer and the protecting layer together. When a head slider is positioned, the head actuator changes its attitude relative to a recording disk. The inertial force based on the rotation causes the first flexible printed circuit board to vibrate when the actuator block stops rotating. The viscoelastic layer serves to absorb this residual vibration of the first flexible printed circuit board. Vibration of the flexible printed circuit board can be suppressed.
Abstract:
A fixing member is spaced from a head actuator by a predetermined distance. A flexible printed circuit board extends at least from the head actuator to the fixing member. The flexible printed circuit board is superposed on the surface of the fixing member. A viscoelastic layer and a protecting layer are overlaid on the surface of the flexible printed circuit board. A clip clips all the fixing member, the flexible printed circuit board, the viscoelastic layer and the protecting layer together. When a head slider is positioned, the head actuator changes its attitude relative to a recording disk. The inertial force based on the rotation causes the first flexible printed circuit board to vibrate when the actuator block stops rotating. The viscoelastic layer serves to absorb this residual vibration of the first flexible printed circuit board. Vibration of the flexible printed circuit board can be suppressed.
Abstract:
A mobile computing device comprises a printed circuit board, a processing circuit, a surface mount microphone, and a vibration attenuation portion. The processing circuit is disposed on a first portion of the printed circuit board. The surface mount microphone is disposed on a second portion of the printed circuit board. The vibration attenuation portion of the board is configured to attenuate vibrations from the first to the second portion of the printed circuit board.
Abstract:
A printed wiring assembly is provided. The printed wiring assembly comprises a printed wiring board, at least one surface mounted component coupled to a surface of the printed wiring board, and at least one support device coupled to the printed wiring board and to the at least one surface mounted component, wherein the at least on surface mounted component is adapted to limit movement of the at least one surface mounted component when the assembly is subject to vibration environments.
Abstract:
An electric circuit device and related manufacturing method are disclosed as having a case incorporating therein a substrate on which electric circuit elements are mounted. A sealant is filled in the case to cover the electric circuit elements and the substrate and is composed of a lower layer gel and an upper layer gel formed in a two-layer structure. The upper layer gel has a penetration equal to or less than 90 and the lower layer gel has a penetration greater than that of the upper layer gel to allow the upper layer gel to suppress vibration of a surface of the lower gel for thereby suppressing the deformation of the lower layer gel even in the presence of a tendency causing the electric circuit elements or the substrate to vibrate, preventing a degraded function in insulation, waterproof and vibrational relaxation of the lower layer gel.
Abstract:
A fixing member is spaced from a head actuator by a predetermined distance. A flexible printed circuit board extends at least from the head actuator to the fixing member. The flexible printed circuit board is superposed on the surface of the fixing member. A viscoelastic layer and a protecting layer are over laid on the surface of the flexible printed circuit board. A clip clips all the fixing member, the flexible printed circuit board, the viscoelastic layer and the protecting layer together. When a head slider is positioned, the head actuator changes its attitude relative to a recording disk. The inertial force based on the rotation causes the first flexible printed circuit board to vibrate when the actuator block stops rotating. The viscoelastic layer serves to absorb this residual vibration of the first flexible printed circuit board. Vibration of the flexible printed circuit board can be suppressed.
Abstract:
A method and apparatus for an electronic equipment rack that provides mobility through directional self-propulsion and multi-axis suspension. The electronic equipment rack further provides self-powered operation and environmental control with wireless access, while protecting against unauthorized access, electromagnetic interference (EMI), and dust contamination. An alternate embodiment provides a non-mobile electronic equipment rack with multi-axis suspension, while optionally providing wireless access and protection against unauthorized access and the environment.
Abstract:
The invention relates to electronic sensors comprising an electromechanical microsensor cell such as a micro-accelerometer, and it more particularly relates to the way in which the microsensor cell per se is mounted in a package that furthermore comprises a printed circuit board carrying the electronic processing circuits associated with the microsensor cell. In order to establish a non-rigid electrical connection between a conductive terminal of the board and a connection pin of the cell , a narrow strip-shaped conductive connection cut by chemical machining from a thin and flexible metal sheet (CuBe) is soldered. The strip comprises at least one circle-arc segment (51) extending over one half-turn or three-fourths of a turn. Its resilience permits very low stiffness in all directions and therefore prevents any transmission of vibrations or shocks to the cell. The manufacture of the connections may be collective for all the connections of a sensor and for successive sensors manufactured serially. Application to accelerometers subjected to large shock and vibration stresses.
Abstract:
In a vibrator support structure, a vibrator is supported on a substrate through support pins, substrate connection portions of the support pins and pin connection portions of the substrate are joined through conductive adhesive which is made of a resin including conductive filler and has a pencil hardness of about 4H or less, and the conductive adhesive has a thickness which can buffer vibrations and impacts propagated through the support pins.
Abstract:
The present invention relates to a method and apparatus that prevents/minimizes cracking in the ceramic body of processors. The ability to prevent/minimize cracking can ensure successful operation and substantially increase processor lifetime. The present invention discloses a device for maintaining a microprocessor in a desired relationship with a printed wiring board while limiting the transmission of shock and vibrational motion to and from the processor includes a printed wiring board, a processor, and a dynamic isolating mount compressed between the printed wiring board and the processor, wherein the processor maintains the dynamic isolating mount in a compressed state such that the dynamic isolating mount bears on the printed wiring board.