Abstract:
A high-power electronics device and a method of forming same are disclosed. The high-power electronics device is formed of a plurality of layers including molding compound, a printed circuit board, electrically conductive contacts, at least one electronic component, and molding compound. In an embodiment, a layer of a dielectric carrier is also provided.
Abstract:
Provided is a circuit assembly that does not require e.g. bending of a terminal of an electronic component. A circuit assembly includes an electronic component that is to be mounted is connected to a conductive member through a first opening in a state in which its main body is disposed on one side of a substrate covering at least a part of the first opening formed in the substrate, and a first terminal is connected to a conductive pattern (a land) of the substrate, and a second terminal is connected to the conductive member through a second opening formed in the substrate.
Abstract:
A low power voltage control circuit for use in space missions includes a switching device coupled between an input voltage and an output voltage. The switching device includes a control input coupled to an enable signal, wherein the control input is configured to selectively turn the output voltage on or off based at least in part on the enable signal. A current monitoring circuit is coupled to the output voltage and configured to produce a trip signal, wherein the trip signal is active when a load current flowing through the switching device is determined to exceed a predetermined threshold and is inactive otherwise. The power voltage control circuit is constructed of space qualified components.
Abstract:
Embodiments of the present disclosure are directed to a leadframe package with recesses formed in outer surface of the leads. The recesses are filled with a filler material, such as solder. The filler material in the recesses provides a wetable surface for filler material, such as solder, to adhere to during mounting of the package to another device, such as a printed circuit board (PCB). This enables strong solder joints between the leads of the package and the PCB. It also enables improved visual inspection of the solder joints after the package has been mounted.
Abstract:
A display device is provided. The display device includes a light engine having light emitting components mounted to a flexible circuit board having a flexible graphite substrate. The flexible circuit board includes a dielectric layer formed on the surface of the flexible graphite substrate and an electrically conductive layer formed on the surface of the dielectric. The high in-plane thermal conductivity graphite substrate provides enhanced heat transfer capability to effectively move of heat away from the light emitting components for improved cooling of the heat generated by the light emitting component and surrounding devices.
Abstract:
A flexible circuit board having a flexible graphite substrate is provided. The flexible circuit board includes a dielectric layer formed on the surface of the flexible graphite substrate and an electrically conductive layer formed on the surface of the dielectric. Electronic components are mounted to the flexible circuit board to form a circuit arrangement. A thermally conductive conduit can be disposed in thermal and physical contact with a surface of the electronic component and the surface of the flexible graphite substrate to. The high in-plane thermal conductivity graphite substrate provides enhanced heat transfer capability to effectively move of heat away from the electronic components for improved cooling of the heat generating electronic component and surrounding devices.
Abstract:
An LED light arrangement is provided. The light arrangement includes LED light emitting components mounted to a flexible circuit board having a flexible graphite substrate. The flexible circuit board includes a dielectric layer formed an the surface of the flexible graphite substrate and an electrically conductive layer formed on the surface of the dielectric. The high in-plane thermal conductivity graphite substrate provides enhanced heat transfer capability to effectively move of heat away from the electronic components for improved cooling of the heat generating light emitting component and surrounding devices.
Abstract:
The present disclosure is directed to a microelectronic assembly that includes first and second microelectronic elements, signal leads, one or more jumper leads, and a dielectric element that has first and second apertures. The signal leads may be connected to one or more of the microelectronic elements and extend through the one or more of the first or second apertures to conductive elements on the dielectric element. The jumper leads may extend through the first aperture and be connected to a contact of the first microelectronic element. The one or more jumper leads may span over the second aperture and be connected to a conductive element on the dielectric element.
Abstract:
This invention describes a method for pumping or delivering fluids utilizing a flexible vessel subject to controlled pressures within another pressure vessel. The pressure vessel can be sourced with positive and/or negative (e.g., vacuum) pressure.
Abstract:
A microelectronic assembly includes a dielectric element having at least one aperture and electrically conductive elements thereon including terminals exposed at the second surface of the dielectric element; a first microelectronic element having a rear surface and a front surface facing the dielectric element, the first microelectronic element having a plurality of contacts exposed at the front surface thereof; a second microelectronic element having a rear surface and a front surface facing the rear surface of the first microelectronic element, the second microelectronic element having a plurality of contacts exposed at the front surface and projecting beyond an edge of the first microelectronic element; and an electrically conductive plane attached to the dielectric element and at least partially positioned between the first and second apertures, the electrically conductive plane being electrically connected with one or more of the contacts of at least one of the first or second microelectronic elements.