Abstract:
Provided is a production method for producing coarse particles of high purity Co powder from a cobalt ammine sulfate complex solution using fine Co powder and using industrially inexpensive H2 gas.
Abstract:
A method for forming a three-dimensional article through successive fusion of parts of a metal powder bed is provided, comprising the steps of: distributing a first metal powder layer on a work table inside a build chamber, directing at least one high energy beam from at least one high energy beam source over the work table causing the first metal powder layer to fuse in selected locations, distributing a second metal powder layer on the work table, directing at least one high energy beam over the work table causing the second metal powder layer to fuse in selected locations, introducing a first supplementary gas into the build chamber, which first supplementary gas comprising hydrogen, is capable of reacting chemically with or being absorbed by a finished three-dimensional article, and releasing a predefined concentration of the gas which had reacted chemically with or being absorbed by the finished three dimensional article.
Abstract:
A finish heat treatment apparatus for an iron powder. Raw iron powder is placed on a continuous moving hearth and continuously charged into the apparatus. In a pretreatment zone, the raw iron powder is subjected to a pretreatment of heating the raw iron powder in an atmosphere of hydrogen gas and/or inert gas at 450 to 1100° C. In decarburization, deoxidation, and denitrification zones, the pretreated iron powder is subsequently subjected to at least two treatments of decarburization, deoxidation, and denitrification. In the pretreatment zone, a hydrogen gas and/or an inert gas serving as a pretreatment ambient gas is introduced separately from an ambient gas used in the at least two treatments is introduced from the upstream side of the pretreatment zone and released from the downstream side so as to flow in the same direction as a moving direction of the moving hearth.
Abstract:
The present invention relates to a method for the production of palladium(0) powder in which a palladium(0) starting powder is subjected to a thermal treatment in a furnace at a temperature of no more than 370° C. in a hydrogen gas atmosphere.
Abstract:
A method of making a rare earth magnet containing zero heavy rare earth elements includes a step of mixing the fine grain power with the lubricant having a weight content of at least 0.03 wt. % and no greater than 0.2 wt. % for a period of between 1 and 2 hours. The step of pulverizing is further defined as jet milling the alloy powder with the lubricant using a carrier gas of argon or nitrogen. The method further includes a step of controlling oxygen content during the steps of melting, forming, disintegrating, mixing, pulverizing, molding, and sintering whereby the impurities including Carbon (C), Oxygen (O), and Nitrogen (N) satisfies 1.2C+0.6O+N≦2800 ppm. A rare earth magnet composition including C, O, and N whereby C, O, and N satisfies 1.2C+0.6O+N≦2800 ppm and has zero heavy rare earth elements.
Abstract:
Provided are a method for producing nickel seed crystals that maintains and improves the quality of nickel powder at a low cost while suppressing production cost and environmental load in the production of nickel powder, by optimizing the amount of hydrazine added when producing fine nickel powder as seed crystals using hydrazine; and a method for producing nickel powder using the nickel seed crystals. The method for producing seed crystals used for producing hydrogen-reduced nickel powder, including adding, to an acid solution containing nickel ions that is maintained at a temperature of 50 to 60° C., hydrazine of 1 to 1.25 mol per 1 mol of a nickel component contained in the acid solution to produce the seed crystals.
Abstract:
The present invention generally relates to methods and apparatuses adapted to perform additive manufacturing (AM) processes and the resulting products made therefrom, and specifically, to AM processes that employ an energy beam to selectively fuse a base material to produce an object. More particularly, the invention relates to methods and systems that use reactive fluids to actively manipulate the surface chemistry of the base material prior to, during and/or after the AM process.
Abstract:
To provide a method for firing a copper paste, which improves sinterability of copper particles for the purpose of forming a copper wiring line that is decreased in the electrical conductivity. A method for firing a copper paste, which comprises: an application step wherein a copper paste is applied over a substrate; a first heating step wherein the substrate is heated in a nitrogen gas atmosphere containing from 500 ppm to 2,000 ppm (inclusive) of an oxidizing gas in terms of volume ratio after the application step, thereby oxidizing and sintering copper particles in the copper paste; and a second heating step wherein the substrate is heated in a nitrogen gas atmosphere containing 1% or more of a reducing gas in terms of volume ratio after the first heating step, thereby reducing the oxidized and sintered copper oxide.
Abstract:
An electrode for the use of an advanced lithium battery is fabricated using three-dimensionally structured metal foam coated with an active material. The metal foam is porous metal foam that can be used as an anode current collector of a lithium-ion battery and is coated with an anode active material, such as tin, through a sonication-assisted electroless plating method. Additionally, the coated metal foam is heat-treated at an appropriate temperature in order to improve the integrity of the coating layer and hence, the cyclic performance of the lithium-ion battery.
Abstract:
Provided are a method for producing nickel seed crystals that maintains and improves the quality of nickel powder at a low cost while suppressing production cost and environmental load in the production of nickel powder, by optimizing the amount of hydrazine added when producing fine nickel powder as seed crystals using hydrazine; and a method for producing nickel powder using the nickel seed crystals. The method for producing seed crystals used for producing hydrogen-reduced nickel powder, including adding, to an acid solution containing nickel ions that is maintained at a temperature of 50 to 60° C., hydrazine of 1 to 1.25 mol per 1 mol of a nickel component contained in the acid solution to produce the seed crystals.