Abstract:
Embodiments of the invention relate to a fluid containment structure for a micro analyzer comprising one or more shelled thermal structures in contact with a thermally isolated component of the analyzer and wherein the shelled thermal structure comprises a conformal film and also comprises three walls of a channel and the thermally isolated component forms the fourth wall.
Abstract:
A method for making a polymeric microfluidic structure in which two or more components (layers) of the microfluidic structure are fixedly bonded or laminated with a weak solvent bonding agent, particularly acetonitrile or a mixture of acetonitrile and alcohol. In an aspect, acetonitrile can be used as a weak solvent bonding agent to enclose a microstructure fabricated in or on a non-elastomeric polymer such as polystyrene, polycarbonate, acrylic or other linear polymer to form a three-dimensional microfluidic network. The method involves the steps of wetting at least one of the opposing surfaces of the polymeric substrate components with the weak solvent bonding agent in a given, lower temperature range, adjacently contacting the opposing surfaces, and thermally activating the bonding agent at a higher temperature than the lower temperature range for a given period of time with RF or ultrasonic energy. The contacted polymeric substrates may also be aligned prior to thermal activation and compressed during thermal activation. A laminated, polymeric microfluidic structure is also disclosed.
Abstract:
The presently disclosed subject matter provides functional perfluoropolyether (PFPE) materials for use in fabricating and utilizing microscale devices, such as a microfluidic device. The functional PFPE materials can be used to adhere layers of PFPE materials to one another or to other substrates to form a microscale device. Further, the presently disclosed subject matter provides a method for functionalizing the interior surface of a microfluidic channel and/or a microtiter well. Also the presently disclosed subject matter provides a method for fabricating a microscale structure through the use of a sacrificial layer of a degradable material.
Abstract:
A microreactor comprising a silicon wafer, a multiplicity of microchannels in the silicon wafer, and a catalyst coating the microchannels. In one embodiment the catalyst coating the microchannels comprises a nanostructured material. In another embodiment the catalyst coating the microchannels comprises an aerogel. In another embodiment the catalyst coating the microchannels comprises a solgel. In another embodiment the catalyst coating the microchannels comprises carbon nanotubes.
Abstract:
The invention relates to a micro fluid chip that leads liquids supplied from a plurality of liquid supply ports, respectively, to a minute flow passage, performs mixing and reaction (chemical reaction) of the liquids in the minute flow passage, and obtains a liquid having been processed from a liquid discharge port. A micro fluid chip that leads liquids supplied from a plurality of liquid supply ports, respectively, to a minute flow passage, performs mixing/reaction of the liquids in the minute flow passage, and obtains a liquid having been processed from a liquid discharge port, the micro fluid chip comprising liquid supplies that supply a plurality of flows, which are formed by division of two kinds of liquids, respectively, in an alternate arrangement, and a flow flattening portion provided downstream of the liquid supplies to be configured in flow passage such that liquids alternately arranged are decreased in dimension as they go downstream and increased in dimension in a direction, which intersects the direction of arrangement and a direction of flow, as they go downstream, to be made substantially the same or slightly large in cross sectional area in the direction of flow. According to the invention, liquids of large flow rates can be processed at high speed and an apparatus is not made large in size.
Abstract:
Microfluidic devices capable of efficiently mixing two or more fluid are provided. Two or more microfluidic inlet channels defined in different sheets of material meet at an overlap region in fluid communication with an outlet channel. The channels are defined through the entire thickness of stencil sheets. The overlap region may include an aperture-defining spacer layer, and/or an impedance element, such as a porous membrane, adapted to distribute at least one fluid across the entire width of the outlet channel to promote reliable fluid mixing.
Abstract:
The microreactor is completely integrated and is formed by a semiconductor body having a surface and housing at least one buried channel accessible from the surface of the semiconductor body through two trenches. A heating element extends above the surface over the channel and a resist region extends above the heating element and defines an inlet reservoir and an outlet reservoir. The reservoirs are connected to the trenches and have, in cross-section, a larger area than the trenches. The outlet reservoir has a larger area than the inlet reservoir. A sensing electrode extends above the surface and inside the outlet reservoir.
Abstract:
Microfluidic devices capable of efficiently mixing two or more fluid are provided. Two or more microfluidic inlet channels defined in different sheets of material meet at an overlap region in fluid communication with an outlet channel. The channels are defined through the entire thickness of stencil sheets. The overlap region may include an aperture-defining spacer layer, and/or an impedance element, such as a porous membrane, adapted to distribute at least one fluid across the entire width of the outlet channel to promote reliable fluid mixing.
Abstract:
The present invention is notably directed to a method of fabrication of a microfluidic chip (1), comprising: providing (S10-S20) a wafer (10, 12) of semiconductor material having a diamond cubic crystal structure, exhibiting two opposite main surfaces (S1, S2), one on each side of the wafer, and having, each, a normal in the or direction; and performing (S30) self-limited, anisotropic wet etching steps on each of the two main surfaces on each side of the wafer, to create a via (20, 20a) extending transversely through the thickness of the wafer, at a location such that the resulting via connects an in-plane microchannel (31) on a first one (S1) of the two main surfaces to a second one (S2) of the two main surfaces, the via exhibiting slanted sidewalls (20s) as a result of the self-limited wet etching. The invention further concerns microfluidic chips accordingly obtained.
Abstract:
A template based process is used for the production of the nanowire structural element, wherein the nanowires are electrochemically depositioned in the nanopores. The irradiation is carried out at different angles, such that a nanowire network is formed. The hollow chamber-like structure in the nanowire network is established through the dissolving of the template foil and removal of the dissolved template material. The interconnecting of the nanowires provides stability to the nanowire structural element and an electrical connection between the nanowires is created thereby.