Abstract:
The invention relates to the use of at least one oil-soluble olefin copolymer B) which acts as a nucleating agent for paraffin crystallization for improving the response of cold flow improvers for mineral oils C), which are different from B), in middle distillates that contain at least one ashless, nitrogenous detergent additive A), which is an oil-soluble, amphiphilic compound that comprises at least one alkyl or alkenyl group bound to a polar group, said alkyl or alkenyl group having 10 to 500 C atoms and the polar group having 2 or more nitrogen atoms.
Abstract:
The invention relates to the use of at least one oil-soluble compound B) which acts as a nucleating agent for paraffin crystallization and which is selected from ethylene copolymers and 2 to 10.5 mole-% of at least one ethylenically unsaturated carbonic ester for improving the response of cold flow improvers for mineral oils C), which are different from B), in middle distillates that contain at least one ashless, nitrogenous detergent additive A), which is an oil-soluble, amphiphilic compound that comprises at least one alkyl or alkenyl group bound to a polar group, said alkyl or alkenyl group having 10 to 500 C atoms and the polar group having 2 or more nitrogen atoms.
Abstract:
The invention relates to dispersions comprising I) at least one polymer that is effective for mineral oils as a cold extrusion improver and is soluble in oil, II) at least one organic solvent that cannot be mixed with water, III) water, IV) at least one alkanolamine salt of a polycyclic carboxylic acid as a dispersing agent, and V) possibly at least one organic solvent that can be mixed with water.
Abstract:
A fuel oil containing a conductivity improving additive comprising the combination of: (a) a polymethacrylate, polyacrylate or polyfumarate polymer not prepared from a quaternary ammonium monomer and having a number average molecular weight of about 1,000 to 10,000,000 and either (b) a conductivity improver comprising (i) an olefin polysulfone and (ii) a polymeric polyamine reaction product of epichlorohydrin and an aliphatic primary monoamine or an N-aliphatic hydrocarbyl alkylene diamine, or the sulfonic acid salt of the polymeric polyamine reaction product or (c) a conductivity improver comprising a hydrocarbon soluble copolymer of an alkylvinyl monomer and a cationic vinyl monomer, wherein the copolymer has an alkylvinyl monomer unit to cationic vinyl monomer unit ratio of from about 1:1 to about 10:1, the copolymer having a number average molecular weight of from about 800 to about 1,000,000.
Abstract:
The present invention provides an additive comprising A) a copolymer of ethylene and 8-21 mol % of at least one acrylic or vinyl ester having a C1-C18-alkyl radical and B) a comb polymer containing structural units of B1) at least one olefin as monomer 1, which bears at least one C8-C18-alkyl radical on the olefinic double bond, and B2) at least one ethylenically unsaturated dicarboxylic acid as monomer 2, which bears at least one C8-C16-alkyl radical bonded via an amide and/or imide moiety, wherein the sum Q Q = ∑ i w 1 i · n 1 i + ∑ j w 2 j · n 2 j of the molar averages of the carbon chain length distributions in the alkyl radicals of monomer 1 on the one hand and the alkyl radicals of the amide and/or imide groups of monomer 2 on the other hand is from 23 to 27, where w1 is the molar proportion of the individual chain lengths in the alkyl radicals of monomer 1, w2 is the molar proportion of the individual chain lengths in the alkyl radicals of the amide and/or imide groups of monomer 2, n1 are the individual chain lengths in the alkyl radicals of monomer 1, n2 are the individual chain lengths in the alkyl radicals of the amide and/or imide groups of monomer 2, i is the serial variable for the individual chain lengths in the alkyl radicals of monomer 1, and j is the serial variable for the individual chain lengths in the alkyl radicals of the amide and/or imide groups of monomer 2.
Abstract:
The invention provides a fuel oil composition comprising a fuel oil of animal or vegetable origin and an additive comprising A) at least one copolymer of ethylene and 8-21 mol % of at least one acrylic or vinyl ester having a C1-C18-alkyl radical and B) at least one comb polymer containing structural units having C8-C16-alkyl radicals, the structural units being selected from C8-C16-alkyl (meth)acrylates, C8-C16-alkyl vinyl esters, C8-C16-alkyl vinyl ethers, C8-C16-alkyl (meth)acrylamides, C8-C16-alkyl allyl ethers and C8-C16-diketenes, where the sum R R = m 1 · ∑ i w 1 i · n 1 i + m 2 · ∑ j w 2 j · n 2 j + … + m g · ∑ p w gp · n gp is the molar average of the carbon chain length distributions in the alkyl radicals of the monomers B) is from 11.0 to 14.0, where m1, m2, . . . mg are the molar fractions of the abovementioned monomers B) in the polymer and the sum of the molar fractions m1 to mg=1, w1i, w1j . . . w2i, w2j . . . wgp are the proportions by weight of the individual chain lengths i, j, . . . p of the alkyl radicals of the different monomers B) 1 to g, and n1i, n1j . . . n2i, n2j . . . ngp are the chain lengths of the alkyl radicals i, j, . . . p of the monomers B) 1 to g.
Abstract:
The invention provides a fuel oil composition F) comprising F1) a fuel oil of mineral origin and F2) a fuel oil of vegetable and/or animal origin, and, as a cold additive, the constituents A) at least one copolymer composed of ethylene and 8-21 mol % of at least one acrylic or vinyl ester having a C1-C18-alkyl radical and B) at least one comb polymer containing structural units having C8-C16-alkyl radicals, the structural units being selected from C8-C16-alkyl (meth)acrylates, C8-C16-alkyl vinyl esters, C8-C16-alkyl vinyl ethers, C8-C16-alkyl(meth)acrylamides, C8-C16-alkyl allyl ethers and C8-C16-diketenes, where the sum R R = m 1 · ∑ i w 1 i · n 1 i + m 2 · ∑ j w 2 j · n 2 j + … + m g · ∑ p w gp · n gp of the molar averages of the carbon chain length distributions in the alkyl radicals of the monomers B) is from 11.0 to 14.0, where m1, m2, . . . mg are the molar fractions of the abovementioned monomers B) in the polymer, and the sum of the molar fractions m1 to mg=1, w1i, w1j . . . w2i, w2j . . . wgp are the proportions by weight of the individual chain lengths i, j, p of the alkyl radicals of the different monomers B) 1 to g, and n1i, n1j . . . n2i, n2j . . . ngp are the chain lengths of the alkyl radicals i, j, . . . p of the monomers B) 1 to g.
Abstract:
Embodiments of the present invention are directed toward systems and methods of providing a low-emissions diesel fuel for use in cold climates. Such fuels may be prepared by a Fischer-Tropsch process and include a pour point depressant. Furthermore, the fuel is used in conjunction with a heated fuel delivery system so that low cloud points are not necessary. Fuels prepared according to embodiments of the present invention may be produced in higher yields than otherwise possible because a higher paraffin wax content can be tolerated, thus obviating the need to remove or exclude the wax. These fuels are characterized by a sulfur content less than 1 ppm, a cetane number greater than 60, an aromatics content less than 1 wt %, and a difference between the cloud and pour points that is greater than about 5° C. The present fuel may be prepared by a Fischer-Tropsch synthesis from any number of carbon-containing sources such natural gas, coal, petroleum products, and combinations thereof.
Abstract:
This invention relates to a method for improving the efficiency with which fuel is burnt in a fuel burning apparatus, particularly an internal combustion engine, comprising dispersing an amount of at least one particulate lanthanide oxide, particularly cerium oxide, in the fuel. This invention further relates to tablets, capsules, compositions and liquid fuel additives suitable for dispersing a lanthanide oxide in fuel.
Abstract:
The invention provides graft copolymers obtainable by grafting an ester (a) of a C8- to C22-alcohol and acrylic acid onto a copolymer (b) containing, in addition to ethylene, from 0.5 to 16 mol % of at least one vinyl ester of the formula 1 CH2═CH—OCOR1 (1) where R1 is a branched C5- to C15-alkyl radical, with the proviso that the copolymer b) contains less than 3.5 mol % of vinyl acetate.