Abstract:
For detecting at least one pulsed light source, light emitted by the pulsed light source being detected by a detector unit, a method includes detecting a first image parameter of the light of the light source using a first exposure time; detecting at least a second image parameter of the light of the light source using an at least second exposure time, the first exposure time and the at least second exposure time being different, and the detector unit being set to a predetermined value between the detection of the first image parameter and the detection of the at least second image parameter, the first image parameter and the at least second image parameter chronologically consecutively representing the same spatial location; and evaluating the at least second image parameter to detect a pulsed light source when at least the at least second image parameter meets a predetermined criterion.
Abstract:
Operational parameters of a single-photon detector are determined with a continuous wave laser source. At a fixed trigger, a dark count probability and a series of count probabilities at different optical powers are determined. A particular optical power is selected by using a wide-range variable attenuator to attenuate the optical power of the continuous wave laser. The dark count probability and the count probabilities are determined for different trigger rates. The operational parameters include efficiency, afterpulsing constant, and detrap time. The operational parameters are computed by fitting the computed dark count probabilities and count probabilities to a user-defined relationship.
Abstract:
A method and a device for inspecting containers and/or preforms. A scattering medium is provided in the interior of the containers or preforms and is irradiated in such manner that the scattering medium forms a bright field behind the container or preform wall area to be imaged. In this way, the wall area can easily be illuminated and imaged from different directions, so that inspection units can be created with a high degree of design freedom and with smaller dimensions.
Abstract:
A method of dividing irradiance regions based on rotated empirical orthogonal function includes following steps. A standardized matrix averaging on annual total radiation amount data is performed. An empirical orthogonal function decomposition on an annual total radiation variable field matrix is performed based on the standardized matrix averaging result of the annual total radiation amount data. A variance contribution rate and an accumulative variance contribution rate are calculated by rotating a load matrix and a factor matrix according to a varimax orthogonal rotation principle based on the empirical orthogonal function decomposition result of the annual total radiation variable field matrix. The irradiance regions are divided according to results of the variance contribution rate and the accumulative variance contribution rate.
Abstract:
An electronic device having one or more sensors is provided. The sensors may include any suitable type of sensor that emits or receives radiation (e.g., light waves) from the environment. The electronic device may include openings through which radiation may reach the sensors while keeping the sensors hidden from view. In some embodiments, the sensors may be placed underneath an opening used for an audio receiver such that radiation is piped to the sensors using a light path or a chamfered surface along the opening. In some embodiments, the sensors may be embedded in a screen such that the radiation emitted by the sensors exits the screen instead of being reflected on the screen. In some embodiments, the sensors may be placed along the periphery of the display, such that access to the sensors is provided via discontinuities in a gasket used to couple the display to the electronic device.
Abstract:
Disclosed are a device for detecting a single photon available at a room temperature, which includes: a signal transmitting unit including a first electrode and a second electrode spaced apart from each other and at least one nanostructure disposed between the first electrode and the second electrode, the first electrode receiving a signal from the signal generating unit; a photonic crystal lattice structure for receiving a photon, the photonic crystal lattice structure having an optical waveguide for guiding the received photon to the first electrode, the optical waveguide being formed by a plurality of dielectric structures; and a single photon detector for detecting a photon by analyzing a signal output to the second electrode, and a method for detecting a single photon using the device.
Abstract:
A UV dosimetry system comprises a wearable unit and a mobile computing device. The wearable unit measures the UV irradiance intensity and wirelessly communicates with the mobile computing device. The UV dosimetry system supports multi-user control and can link one mobile computing device with multiple wearable units. The UV dosimetry system processes the measured UV irradiance intensity to calculate the UV index (UVI) and the sensor site specific UV dose. It can also calculate the total absorbed UV dose and vitamin D production by taking into account user specific factors. The UVI data measured by a plurality of UV meters such as the disclosed UV dosimetry system are crowd sourced to a remote server together with the location and time data of the measurement. The remote server excludes invalid UVI measurement and generates UVI maps showing time-varying distribution of UVI data at different locations.
Abstract:
Operational parameters of a single-photon detector are determined with a continuous wave laser source. At a fixed trigger, a dark count probability and a series of count probabilities at different optical powers are determined. A particular optical power is selected by using a wide-range variable attenuator to attenuate the optical power of the continuous wave laser. The dark count probability and the count probabilities are determined for different trigger rates. The operational parameters include efficiency, afterpulsing constant, and detrap time. The operational parameters are computed by fitting the computed dark count probabilities and count probabilities to a user-defined relationship.
Abstract:
The present invention includes a slanted periodically poled device 12 including a light input surface 12a and a light output surface 12b parallel to each other and a terahertz wave input surface 12c orthogonal to the light input surface 12a and the light output surface 12b, a pump beam source 14 which emits pump beam 1 perpendicularly to the light input surface 12a, and a photodetector 16 which detects an up-conversion signal beam A converted from a terahertz wave 3 emitted perpendicularly from the light output surface 12b. The slanted periodically poled device 12 is configured to generate the up-conversion signal beam A in the same direction as and in parallel with the pump beam 1 by quasi phase matching between the terahertz wave 3 perpendicularly incident from the terahertz wave input surface 12c and the pump beam 1.