Abstract:
An intracavity laser absorption infrared spectroscopy system for detecting trace analytes in vapor samples. The system uses a spectrometer in communications with control electronics, wherein the control electronics contain an analyte database that contains absorption profiles for each analyte the system is used to detect. The system can not only detect the presence of specific analytes, but identify them as well. The spectrometer uses a hollow cavity waveguide that creates a continuous loop inside of the device, thus creating a large path length and eliminating the need to mechanically adjust the path length to achieve a high Q-factor. In a preferred embodiment, the laser source may serve as the detector, thus eliminating the need for a separate detector.
Abstract:
An analyzer is disclosed herein. The analyzer encompasses a substrate having a surface with a plurality of distinct V-grooves formed therein. An input flow channel is configured to intersect and fluidly communicate with each of the plurality of distinct V-grooves at respective input points, and an output flow channel is configured to intersect and fluidly communicate with each of the plurality of distinct V-grooves at respective output points.
Abstract:
A method and device for automatically identifying a point of interest (e.g., the deepest or highest point) on the surface of an anomaly on a viewed object using a video inspection device is disclosed. The video inspection device obtains and displays an image of the surface of the viewed object. A reference surface is determined along with a region of interest that includes a plurality of points on the surface of the anomaly. The video inspection device determines a depth or height for each of the plurality of points on the surface of the anomaly in the region of interest. The point on the surface of the anomaly (e.g., having the greatest depth or height) is identified as the point of interest. A profile of the object surface at the point of interest is then determined.
Abstract:
Method for identifying CVD diamond comprises (1) placing a clean diamond on a fixed platform; (2) illuminating the diamond with light having various wavelengths; (3) receiving reflected light from the diamond; (4) calculating a reflectance value at each wavelength based on a light intensity at each wavelength of the reflected light, generating a spectral reflectance curve; (5) determining whether the spectral reflectance curve has a sharp trough, then storing the diamond if the spectral reflectance curve thereof does not have the sharp trough, while selecting the diamond for a further identification if the spectral reflectance curve thereof has the sharp trough; and (6) determining whether the sharp trough of the diamond selected from the step (5) is at a wavelength between 227 nm and 233 nm, and identifying the diamond to be the CVD diamond if the sharp trough is at the wavelength between 227 nm and 233 nm.
Abstract:
Method for identifying CVD diamond comprises (1) placing a clean diamond on a fixed platform; (2) illuminating the diamond with light having various wavelengths; (3) receiving reflected light from the diamond; (4) calculating a reflectance value at each wavelength based on a light intensity at each wavelength of the reflected light, generating a spectral reflectance curve; (5) determining whether the spectral reflectance curve has a sharp trough, then storing the diamond if the spectral reflectance curve thereof does not have the sharp trough, while selecting the diamond for a further identification if the spectral reflectance curve thereof has the sharp trough; and (6) determining whether the sharp trough of the diamond selected from the step (5) is at a wavelength between 227 nm and 233 nm, and identifying the diamond to be the CVD diamond if the sharp trough is at the wavelength between 227 nm and 233 nm.
Abstract:
The present invention describes a low-cost, portable multi-parameter, turbidity sensor based on optical fiber.The sensor quantifies the transmission and scattering of radiation (nephelometry) in a fluid through radiation emission in two or more wavelengths. Inc invention can be used to estimate concentration of suspended sediments, to distinguish the type of sediment based on color, to distinguish different particle-size classes, and to identify and determine the concentrations of different suspended-sediment fractions.The sensor comprises the following elements: radiation emitter of two or more wavelengths (2), a radiation receiver to measure the transmitted radiation. (2), a radiation receiver to measure the scattered radiation (3), and an inner space (4) of the measurement unit containing the fluid being evaluated. The it three elements are located at the specified distances L1, L2 and L3, and at specified angles A1 and A2, as shown in the Figure
Abstract:
Apparatus, systems, and methods may operate to transmit energy to a nanofiber sampling coil and/or a nanofiber reference coil. Further activity may include receiving the energy as modified by evanescent interaction with a sampled material located proximate to the sampling coil and/or as modified by propagation through the reference coil, and comparing the energy modified by evanescent interaction with the energy modified by propagation through the reference coil to determine a spectroscopic property of the sampled material. Additional apparatus, systems, and methods, including the use of nanofibers and fluorescence induced by evanescent radiation to conduct spectroscopic analysis, are disclosed.
Abstract:
This disclosure relates to a method for the nondestructive testing, using laser ultrasonics, of a composite part having a fibrous reinforcement in a resin that optically scatters the laser, includes: a) taking a measurement of the thickness of the resin of the part on the surface that is illuminated during the laser shot, which is capable of generating a thermoelastic effect in said resin and which is referred to as an ultrasonic laser shot; b) adjusting the power of the laser of said ultrasonic shot on the basis of the thickness measurement carried out in step a) so as to eliminate any risk of a flash on the reinforcements; and c) producing the ultrasonic laser shot at the power determined during step b). The device used for implementing the method comprises a combined photoacoustic imaging and low time-coherence interferometry (OCT) system.
Abstract:
An optic light guide test sensor comprises a light guide, a reagent-coated membrane, and a mesh layer. The reagent-coated membrane and the mesh layer are attached to the light guide at an output end of the light guide. The light guide test sensor is adapted to be used to test the level of an analyte in a biological fluid sample when used with a readhead. A method of manufacturing the light guide test sensor involves providing a plurality of light guides, providing a strip of reagent-coated membrane, and providing a strip of mesh layer. The reagent-coated membrane and mesh layer are attached to the light guides by ultrasonic welding. The reagent-coated membrane and mesh layer may also be attached to the light guides by adhesive.
Abstract:
The invention makes it possible to measure binding of a biochemical substance with a high throughput and with high sensitivity using a small cell capable of being filled with a small amount of chemical solution. A space between a first substrate and a second substrate such that probes are immobilized on their mutually facing planes is used as a cell that houses a specimen solution. Light is irradiated from a first substrate side, and reflected light is subjected to spectroscopy. Binding of the target with the probe is detected by a wavelength shift in the refection spectrum.