Abstract:
The present invention relates to a halogen-free epoxy resin composition, a prepreg, a laminate and a printed circuit board containing the same. The halogen-free epoxy resin composition comprises an epoxy resin and a curing agent. Taking the total equivalent amount of the epoxy groups in the epoxy resin as 1, the active groups in the curing agent which react with the epoxy groups have an equivalent amount of 0.5-0.95. By controlling the equivalent ratio of the epoxy groups in the epoxy resin to the active groups in the curing agent to be 0.5-0.95, the present invention ensures the Df value stability of prepregs under different curing temperature conditions while maintaining a low dielectric constant and a low dielectric loss. The prepregs and laminates prepared from the resin composition have comprehensive performances, such as low dielectric constant, low dielectric loss, excellent flame retardancy, heat resistance, cohesiveness, low water absorption and moisture resistance, and are suitable for use in halogen-free multilayer circuit boards.
Abstract:
The present invention provides a conductive-layer-integrated flexible printed circuit board that has excellent electrical insulation reliability and that prevents the electrically conductive layer from being detached during a reflow process. The conductive-layer-integrated flexible printed circuit board includes: (A) an electromagnetic-shielding conductive layer; (B) an insulator film; and (C) a wiring-pattern-equipped film, (A) the electromagnetic-shielding conductive layer, (B) the insulator film, and (C) the wiring-pattern-equipped film being laminated in this order, (B) the insulator film containing at least (a) a binder polymer and (b) a black coloring agent having a reflective range within the infrared range.
Abstract:
In accordance with the present invention, compositions are described which are useful, for example, for the preparation of metal-clad laminate structures, methods for the preparation thereof, and various uses therefor. Invention metal-clad laminate structures are useful, for example, in the multi-layer board (MLB) industry, in the preparation of burn-in test boards and high reliability boards, in applications where low coefficient of thermal expansion (CTE) is beneficial, in the preparation of boards used in down-hole drilling, and the like.
Abstract:
The invention provides a polyphenylene ether modified phenol-benzaldehyde multifunctional epoxy resin with formula (I). whereinA is: PPE are: Z are: Y are: Their manufactured is following steps: polyphenylene ether 100 parts is dissolved in solvent, then phenol-benzaldehyde multifunctional epoxy resin 100˜450 parts and catalyst 0.01˜5 parts are added, stirred and mixed at 90˜180□, for 1˜4 hour, to obtain formula (I) solution. Said product is formulated with compositions for laminate, having excellent electrical properties and heat resistance. The dielectric constant is 4.03 (1 GHz), dissipation factor is 0.0046 (1 GHz) and no delamination longer than 60 minutes dipping in 288 soldering test after 2 hours pressure cooking test. Application is insulating materials for highly reliable electronic components such as EMC, PCB substrates, laminate and insulating plates.
Abstract:
The present invention relates to a halogen-free resin composition and a prepreg and a laminated board prepared therefrom. The halogen-free resin composition contains the following components in parts by weight: 50-100 parts of an epoxy resin; 20-70 parts of benzoxazine; 5-40 parts of a polyphenyl ether; 5-40 parts of allyl benzene-maleic anhydride; 10-60 parts of a halogen-free flame retardant; 0.2-5 parts of a curing accelerator, and 20-100 parts of a filler. The prepreg and laminated board prepared from the halogen-free resin composition have comprehensive performances such as a low dielectric constant, a low dielectric loss, an excellent flame retardance, heat resistance, cohesiveness and moisture resistance, etc., and are suitable for use in a halogen-free high multilayer circuit board.
Abstract:
A thermosetting resin composition includes a thermosetting resin containing a benzoxazine compound, and a curing accelerator containing a triazine thiol compound. The thermosetting resin contains 0.4 or less equivalents of an epoxy resin relative to one equivalent of the benzoxazine compound.
Abstract:
The present invention relates to an epoxy resin curing agent having a structure of Formula I and preparation methods and uses thereof. The present invention makes a resin composition formed by the epoxy resin curing agent have good low dielectric properties by using an epoxy resin curing agent having a specific structure, and the cured products of the epoxy resin composition have low dielectric constant and dielectric loss and good heat resistance and are low dielectric materials having great economic properties and being environmental friendly.
Abstract:
The present invention provides a thermosetting resin composition comprising (A) a curing agent having an acidic substituent and an unsaturated maleimide group which is produced by a specific method, (B) a 6-substituted guanamine compound and/or dicyandiamide, (C) a copolymer resin comprising specific monomer units and (D) an epoxy resin and a prepreg and a laminated plate which are prepared by using the same. The thermosetting resin composition of the present invention is balanced in all of a copper foil adhesive property, a heat resistance, a moisture absorption, a flame resistance, a metal-stuck heat resistance, a relative dielectric constant and a dielectric loss tangent. They have a low toxicity and are excellent in a safety and a working environment, and therefore a prepreg and a laminated plate which have excellent performances are obtained by using the above thermosetting resin composition.
Abstract:
Disclosed herein are embodiments of an epoxy casting resin system which can be used to at least partially cover an electronic component or mechanism. In some embodiments, the epoxy resin can have a low viscosity, while maintaining advantageous physical, thermal, and electrical properties. Further described are methods for making embodiments of the epoxy casting resin.
Abstract:
Provided in the present invention are an epoxy resin composition, prepreg and laminate using the same, the epoxy resin composition comprising the following components: (A) an imide modified epoxy resin; and (B) a crosslinking agent, the imide modified epoxy resin being an epoxy resin having a structure of formula (1) and/or formula (2). The prepreg and laminate prepared from the epoxy resin composition have a high glass-transition temperature, a low dielectric constant, a low dielectric loss factor, a high heat and humidity resistance, a high toughness and a good processability.