Abstract:
A cleaning composition includes about 0.01 to about 5 wt % of a chelating agent; about 0.01 to about 0.5 wt % of an organic acid; about 0.01 to about 1.0 wt % of an inorganic acid; about 0.01 to about 5 wt % of an alkali compound; and deionized water.
Abstract:
A transparent electrode sheet includes a transparent support having thereon patterned electrodes, and an absolute value of a difference between a reflection chromaticity of a surface of the electrode of far side from the transparent support and a reflection chromaticity of a surface of the electrode of near side to the transparent support is not more than 2.
Abstract:
A multilayer wiring base plate includes an insulating plate including a plurality of synthetic resin layers made of an insulating material, a wiring circuit provided in the insulating plate, a thin-film resistor formed along at least one of the synthetic resin layers to be buried in the synthetic resin layer and inserted in the wiring circuit, and a heat expansion and contraction restricting layer formed to be buried in the synthetic resin layer adjacent to the synthetic resin layer in which the thin-film resistor is formed to be buried, arranged along the thin-film resistor, and having a smaller linear expansion coefficient than a linear expansion coefficient of the adjacent synthetic resin layers.
Abstract:
Disclosed herein are a thin film electrode ceramic substrate and a method for manufacturing the same. The thin film electrode ceramic substrate includes: a ceramic substrate; one or more anti-etching metal layers formed in a surface of the ceramic substrate; thin film electrode pattern formed on the anti-etching metal layers; and a plating layer formed on the thin film electrode pattern, wherein respective edge portions of the thin film electrode pattern are contacted with the anti-etching metal layer, and thus, an undercut defect occurring between the surface of the ceramic substrate and the thin film electrode pattern and between the thin film electrode patterns due to an etchant can be prevented and the binding strength of the entire thin film electrode pattern can be enhanced, resulting in securing durability and reliability of the thin film electrode patterns.
Abstract:
Sub-micron precision alignment between two microelectronic components can be achieved by applying energy to incite an exothermic reaction in alternating thin film reactive layers between the two microelectronic components. Such a reaction rapidly distributes localized heat to melt a solder layer and form a joint without significant shifting of components.
Abstract:
A conductive element includes: a substrate having a first wavy surface, a second wavy surface, and a third wavy surface; a first layer provided on the first wavy surface; and a second layer formed on the second wavy surface. The first and second layers form a conductive pattern portion. The first, second, and third wavy surfaces satisfy the following relationship: 0≦(Am1/λm1)
Abstract:
A wiring substrate includes a substrate main body having a first main face and a second main face opposite the first main face; a resistor formed on the first main face; a plurality of first-main-face-side wiring layers which are each formed on the resistor and which each include a grounding metal layer formed of a metal having a resistance lower than that of the resistor and a conductor layer formed on the grounding metal layer; a second-main-face-side wiring layer formed on the second main face; and a via which is formed in the substrate main body and which establishes electrical connectivity between the first-main-face-side wiring layers and the second-main-face-side wiring layer. The wiring substrate further includes a conductive covering layer which covers an upper surface and substantially covers the side surfaces of each of the first-main-face-side wiring layers.
Abstract:
A wiring board 10a according to the present invention is provided with an insulating board 1 laminated at least one insulating layer 1b having a via hole 8 on at least one surface of a core layer 1a, a via conductor 2b formed inside the via hole 8 and containing a low resistance material, and a connection pad formed at the surface of the insulating layer 1b and including a thin film resistor layer 3a containing a high resistance material, wherein the thin film resistor layer 3a is adhered to the insulating layer 1b in such a manner as to cover the via conductor 2b and the insulating layer 1b surrounding the via conductor 2b.
Abstract:
There is provided an electronic device. The electronic device includes: a wiring board; a first electronic component mounted on the wiring board and configured to emit an electromagnetic wave having a first frequency band; a second electronic component mounted on the wiring board and configured to emit an electromagnetic wave having a second frequency band; a first magnetic thin film covering the wiring board, the first electronic component and the second electronic component, wherein the first magnetic thin film has a composition corresponding to the first frequency band; and a second magnetic thin film covering the first magnetic thin film, wherein the second magnetic thin film has a composition corresponding to the second frequency band.
Abstract:
Sub-micron precision alignment between two microelectronic components can be achieved by applying energy to incite an exothermic reaction in alternating thin film reactive layers between the two microelectronic components. Such a reaction rapidly distributes localized heat to melt a solder layer and form a joint without significant shifting of components.