Abstract:
A bonding pad with high bonding strength to a solder ball and a bump includes a carrier, a wiring layer formed on the carrier, a protection layer formed on top of the wiring layer and a solder mask layer surrounded around the protection layer and the wiring layer to form a bonding pad opening. The protection layer is extended outside the bonding pad opening such that when solder are extended into the bonding pad opening, the solder balls engage with side faces defining the bump pad opening as well as the protection layer outside the bump pad opening and a bonding strength between the bonding pad and the solder performance is increased.
Abstract:
In a wiring substrate of the present invention in which a bump of an electronic parts is bonded to a connection pad of a wiring pattern provided on an insulating film by an ultrasonic flip-chip packaging, a via hole into which a via post acting as a strut to support the connection pad upon the ultrasonic flip-chip packaging is filled is arranged in the insulating film under the connection pad.
Abstract:
A first high speed transmission line board (1) having a stripline structure is composed of a first elastomer sheet (1A) that has a fixed dielectric constant, plural first elastomer strips (1B) that are conductive, arrayed at two edges of the first elastomer sheet (1A), and plural first high speed transmission lines (1C) formed in a pattern connecting two ends of the first elastomer strips (1B). A first surface layer board (2) is composed of a second elastomer sheet (2A) that is nonconductive, and plural second elastomer strips (2B) that are conductive, arrayed similarly to the first elastomer strips (1B), at two edges of the second elastomer sheet (2A). A multilayer board is configured by laminating the first surface layer board (2) on the first high speed transmission line board (1), and external connecting terminals are in pressurized contact with the plural second elastomer strips (2B), so that the plural first high speed transmission lines (1C) are connected.
Abstract:
An electronic circuit unit contains electrodes to which bumps of a semiconductor chip are adhered. The electrodes are arranged on an upper surface of a circuit board. Land units to which chip parts is soldered are arranged on a rear surface of the circuit board. such that an insulating plate which is on the rear surface of the circuit board is supported by a supporting jig during a mounting process of the semiconductor chip, and the circuit board is not tilted. Therefore, an electronic circuit unit ensuring that the semiconductor chip is mounted with a reliable mounting capability can be obtained.
Abstract:
A pre-solder structure on a semiconductor package substrate and a method for fabricating the same are proposed. A plurality of conductive pads are formed on the substrate, and a protective layer having a plurality of openings for exposing the conductive pads is formed over the substrate. A conductive seed layer is deposited over the protective layer and openings. A patterned resist layer is formed on the seed layer and has openings corresponding in position to the conductive pads. A plurality of conductive pillars and a solder material are deposited in sequence in each of the openings. The resist layer and the seed layer not covered by the conductive pillars and the solder material are removed. The solder material is subject to a reflow-soldering process to form pre-solder bumps covering the conductive pillars.
Abstract:
A conductive bump structure of a circuit board and a fabrication method thereof are proposed. The circuit board is formed with conductive circuits on a surface thereof An insulating protection layer having a plurality of openings to expose terminals of the conductive circuits is formed on the circuit board. A conductive layer is formed on the insulating protection layer and in the openings thereof. A patterned resist layer is formed on the conductive layer and has a plurality of openings corresponding in position to the terminals of the conductive circuits. Conductive bumps are formed by electroplating in the openings of the resist layer. Then, the resist layer and the conductive layer underneath the resist layer are removed. An adhesive layer is formed on the conductive bumps and completely covers exposed surfaces of the conductive bumps respectively. The circuit board can be electrically connected to electronic elements through the conductive bumps.
Abstract:
A method of applying an edge electrode pattern to a touch screen. The method includes depositing, on a first surface of a decal strip, conductive material in the form of an edge electrode pattern, placing the first surface of the decal strip on one edge of a touch screen, applying heat and pressure to an opposite surface of the decal strip until the edge electrode pattern is transferred from the first surface of the decal strip to the touch screen; and removing the decal strip.
Abstract:
A protective circuit board for a battery pack for controlling charge and discharge states of the battery pack includes an insulation layer and a first signal pattern disposed inside the insulation layer. The circuit can further include a second signal pattern disposed inside the insulation layer. The circuit can include a first dummy pattern spaced from a first side of the first signal pattern and a second dummy pattern spaced from a second side of the first signal pattern.
Abstract:
Disclosed are a liquid crystal display (LCD) and a method for manufacturing the same, in which connection stability is improved when connecting a COG, a COF, or an FPC to a driving circuit. A substrate of the LCD has a display region and a non-display region at a peripheral area thereof. Terminals are provided to electrically connect an external circuit and a circuit of the display region to ends of signal lines extended from the display region and the non-display region. A flat protective layer is formed on the terminals. A plurality of pads are respectively formed of a first contact region and a flat second contact region, and each of the pads contacts a corresponding terminal, which is formed through a pad contact hole formed on the protective layer, at the first contact region, and each of the pads is electrically connected through an anisotropic conductive resin to a terminal of the external circuit by a pressing process at the flat second contact region.
Abstract:
The invention provides a new method and chip scale package is provided. The inventions starts with a substrate over which a contact point is provided, the contact point is exposed through an opening created in the layer of passivation and a layer of polymer or elastomer. A barrier/seed layer is deposited, a first photoresist mask is created exposing the barrier/seed layer where this layer overlies the contact pad and, contiguous therewith, over a surface area that is adjacent to the contact pad and emanating in one direction from the contact pad. The exposed surface of the barrier/seed layer is electroplated for the creation of interconnect traces. The first photoresist mask is removed from the surface of the barrier/seed layer. A second photoresist mask, defining the solder bump, is created exposing the surface area of the barrier/seed layer that is adjacent to the contact pad and emanating in one direction from the contact pad. The solder bump is created in accordance with the second photoresist mask, the second photoresist mask is removed from the surface of the barrier/seed layer, exposing the electroplating and the barrier/seed layer with the metal plating overlying the barrier/seed layer. The exposed barrier/seed layer is etched in accordance with the pattern formed by the electroplating, reflow of the solder bump is optionally performed.