Abstract:
One exemplary embodiment can include an apparatus for transferring catalyst from a regeneration zone to a reaction zone in a hydrocarbon conversion unit. The hydrocarbon conversion unit can include a transfer vessel, and first, second, and third lines. The transfer vessel can transfer regenerated catalyst from the regeneration zone at a first pressure to the reaction zone at a second pressure where the second pressure is greater than the first pressure. Generally, the first line communicates the catalyst to the transfer vessel and is coupled to a first valve to allow catalyst into the transfer vessel and the second line communicates the catalyst from the transfer vessel and is coupled to a second valve to allow catalyst out of the transfer vessel. The third line for allowing the passage of gas therethrough may be at a pressure higher than the first pressure having a first portion communicating with the transfer vessel and having a second portion coupled to third and fourth valves. Each of the third and fourth valves can have a first position that is open and a second position that is closed, which may correspond, respectively, to the opening and closing of the first and second valves to allow gas to pass therethrough.
Abstract:
The instant invention relates to a process to produce low sulfur distillate products through the hydrotreating of distillate boiling range feedstreams in the presence of a bulk metal hydrotreating catalyst.
Abstract:
A method for producing a shell catalyst comprising a porous catalyst support shaped body with an outer shell containing at least one transition metal in metal form. To provide a shell catalyst with a relatively small shell thickness, a device is set up to circulate the catalyst support shaped bodies by means of process gases with a reductive effect. The device is charged with catalyst support shaped bodies that are circulated by means of a process gas with a reductive effect, an outer shell of the catalyst support shaped bodies is impregnated with a transition-metal precursor compound by spraying the circulating catalyst support shaped bodies with a solution containing the transition-metal precursor compound, the metal component of the transition-metal precursor compound is converted into the metal form by reduction by means of the process gas, and the catalyst support shaped bodies sprayed with the solution are dried.
Abstract:
A method and system for producing dispersed waxes, including a high shear mechanical device. In one embodiment, the method comprises forming a dispersion of wax globules in a carrier liquid in a high shear device prior to implementation in a waxy product. In another instance the system for producing waxy products comprises a high shear device for dispersing wax in a carrier liquid.
Abstract:
The present invention is a chemical reactor and method for catalytic chemical reactions having gas phase reactants. The chemical reactor has reactor microchannels for flow of at least one reactant and at least one product, and a catalyst material wherein the at least one reactant contacts the catalyst material and reacts to form the at least one product. The improvement, according to the present invention is: the catalyst material is on a porous material having a porosity that resists bulk flow therethrough and permits molecular diffusion therein. The porous material further has a length, a width and a thickness, the porous material defining at least a portion of one wall of a bulk flow path through which the at least one reactant passes.
Abstract:
A support system for catalyst gauzes in an ammonia oxidation burner and a method of reducing movement of particulate ceramic material due to thermal dilatation includes the catalyst gauzes (1) and possibly support screens (2) being supported by ceramic fillings contained in a burner basket with metal walls and a perforated bottom plate. A “wave breaker” (9, 11) is fixed to the metal wall (4) and/or the outer part/periphery of the bottom plate (5).
Abstract:
An apparatus and method for removing polymer solids from a slurry loop reactor. A discharge conduit having a longitudinal axis and an end section for removing polymer solids from the slurry loop reactor is provided. The discharge conduit is attached to the slurry loop reactor so that the longitudinal axis and at least a portion of an outer wall of the slurry loop reactor form an angle of less than about 90 degrees. The end section includes a first edge and a second edge that extends past at least a portion of an inner wall of the slurry loop reactor into a liquid reactor slurry. Polymer solids contained within the liquid reactor slurry are concentrated on the second edge so that an average polymer solids concentration in the discharge slurry is greater than an average polymer solids concentration of the liquid reactor slurry within the slurry loop reactor.
Abstract:
An improved radial or cross flow moving bed regenerator or reactor, in which the solid particle residence time in the vessels can be changed in different section of the regenerator or reactor. The improvement results from the placement of one or multiple screen inserts which divides the radial or cross flow bed into separate solid flow channels. The residence time of the solid in each solid flow channels are optimized based on the regeneration or reaction requirement by changing the location, orientation and geometry of the screen inserts. As a result of the optimization of solid residence time in different section in the radial flow bed, the efficiency of a regenerator or a reactor is improved.
Abstract:
The present invention provides methods and apparatus for treating flue gas containing sulfur dioxide using a scrubber, and more particularly relates to recovering gypsum and magnesium hydroxide products from the scrubber blowdown. The gypsum and magnesium hydroxide products are created using two separate precipitation reactions. Gypsum is crystallized when magnesium sulfate reacts with calcium chloride. Magnesium hydroxide is precipitated when magnesium chloride from the gypsum crystallization process reacts with calcium hydroxide. The process produces a high quality gypsum with a controllable pH and particle size distribution, as well as high quality magnesium hydroxide.
Abstract:
This invention relates to an apparatus and process for atomizing a petroleum feed. More particularly, a liquid petroleum feed is atomized with an atomization apparatus in which the apparatus has an orifice that produces a generally flat spray pattern of finely dispersed feed prior to contacting catalyst in a fluid catalytic cracking zone. The orifice has a general aspect ratio greater than 1.0 and a ratio of perimeter length-to-cross-sectional area greater than 1.5 relative to a perimeter-to-cross-sectional area ratio of a circular orifice of equivalent area. The apparatus can be used to atomize feed injected into the cracking zone of a fluid catalytic cracker.