Abstract:
Provided is a semiconductor light detection device having a relatively high detection sensitivity to a light component of a specific wavelength. The semiconductor light detection device includes: a semiconductor light receiving element, in which a first conductive layer is formed on a surface of a semiconductor substrate, a second conductive layer is formed below the first conductive layer, a third conductive layer is formed below the second conductive layer, and a photocurrent based on the intensity of incident light is output from the third conductive layer while an input voltage is applied to the first conductive layer; and a semiconductor detection circuit configured to output an output voltage based on a current difference between a first photocurrent and a second photocurrent being output in response to the application of the first input voltage and the second input voltage, respectively.
Abstract:
A method of an optical detecting device for synchronizing an exposure timing sequence of an image detector with a light emitting timing sequence of a reference light source is disclosed. The method includes capturing a continued image set according to a predetermined period, analyzing intensity variation of the continued image set, and adjusting the exposure timing sequence of an image detector according to the intensity variation, so as to synchronize the exposure timing sequence of the image detector with the light emitting timing sequence of the reference light source.
Abstract:
An electronic device may have a display with a brightness that is adjusted based on data gathered from one or more ambient light sensors (ALSs). In one suitable arrangement, an ALS may include a photodiode, a temperature sensor, a scaler, an analog-to-digital converter (ADC), and a subtractor. The subtractor may have a first input coupled to the photodiode via the ADC, a second input coupled to the temperature sensor via the scaler, and an output on which a leakage-compensated sensor output is provided. In another suitable arrangement, the ALS may include first and second photodiodes, a light blocking layer formed over the second photodiode, a scaler, and a subtractor. The subtractor may have a first input coupled to the first photodiode, a second input coupled to the second photodiode via the scaler, and an output on which a leakage-compensated sensor output is provided.
Abstract:
The present invention comprises an approach for calibrating the sensitivity to polarization, optics degradation, spectral and stray light response functions of instruments on orbit. The concept is based on using an accurate ground-based laser system, Ground-to-Space Laser Calibration (GSLC), transmitting laser light to instrument on orbit during nighttime substantially clear-sky conditions. To minimize atmospheric contribution to the calibration uncertainty the calibration cycles should be performed in short time intervals, and all required measurements are designed to be relative. The calibration cycles involve ground operations with laser beam polarization and wavelength changes.
Abstract:
There is provided an information processing apparatus including a display portion, an illuminance sensor and a controller. The display portion has a display screen. The illuminance sensor measures an ambient brightness of the display screen at a first interval. The controller shifts the illuminance sensor to a state in which the illuminance sensor measures the ambient brightness at a second interval which is longer than the first interval when a change of the brightness is relatively small.
Abstract:
The description relates to a standard for wavelength and intensity for spectrometers, particularly for calibrating and testing measurement heads in spectrometers which are usable primarily in the near infrared region (NIR) of the spectrum. The standard comprises a holder and a plate body arranged in the holder. The plate body is made of transparent plastic with high strength and dimensional stability over a large temperature range. The plastic has distinct absorption bands throughout the entire NIR range and has a chemical structure and composition ensuring an extensive moisture barrier against water absorption and water release in a reliable and stable manner over time. The plate body advantageously comprises an amorphous, transparent copolymer based on cyclic and/or linear olefins.
Abstract:
An optical device and method providing multi-channel bulk optical power monitoring is disclosed. The device and method may include a scanning mirror, a plurality of input optical fibers, a plurality of output optical fibers, and at least one sample optical fiber optically connected to a photodetector. The device and method may further include a first reflective surface and a second reflective surface. The first reflective surface may reflect light from the input optical fibers to the second reflective surface. The second reflective surface may reflect a first portion of the light into the output optical fibers and pass a second portion of the light to the scanning mirror. The scanning mirror may reflect samples of the second portion of the light into the at least one sample optical fiber.