Abstract:
A degree of polarization control device includes: a calcium fluoride crystal substrate for transmitting a laser beam; a polarization monitor for measuring the degree of polarization of a laser beam transmitted through the calcium fluoride crystal substrate; and a controller for controlling the rotation angle of the calcium fluoride crystal substrate according to the degree of polarization measured by the polarization monitor; the calcium fluoride crystal substrate being formed by a flat plate having a laser beam entering surface and a laser beam exiting surface running in parallel with the (111) crystal face, the Brewster angle being selected for the incident angle, the rotation angle around the [111] axis operating as a central axis being controlled by the controller.
Abstract:
A gas discharge chamber that uses a calcium fluoride crystal which reduces a breakage due to mechanical stress (window holder and laser gas pressure), thermal stress from light absorption, and the like, increases the degree of linear polarization of output laser, and suppresses degradation due to strong ultraviolet (ArF, in particular) laser light irradiation. A first window (2) and a second window (3) of the gas discharge chamber have an incident plane and an emitting plane in parallel with a (111) crystal plane of their calcium fluoride crystal. With respect to an arrangement where laser light entering the calcium fluoride crystal passes through a plane including a axis and a axis of each of the first window (2) and the second window (3) as seen from inside the chamber (1), the first window (2) and the second window (3) are arranged in positions rotated in the same direction by the same angle about their axis.
Abstract:
A solid-state laser apparatus may include: a master oscillator configured to output laser light having at least one longitudinal mode, the master oscillator being capable of changing the spectral linewidth of the laser light output therefrom; at least one amplifier located downstream of the master oscillator on an optical path; a wavelength converter located downstream of the amplifier on the optical path; a detector configured to detect the spectrum of the laser light; and a controller configured to control the spectral linewidth of the laser light output from the master oscillator based on a detection result of the detector.
Abstract:
An extreme ultraviolet light source apparatus, which is to generate an extreme ultraviolet light by irradiating a target with a main pulse laser light after irradiating the target with a prepulse laser light, the extreme ultraviolet light source apparatus comprises: a prepulse laser light source generating a pre-plasma by irradiating the target with the prepulse laser light while a part of the target remains, the pre-plasma being generated at a different region from a target region, the different region being located on an incident side of the prepulse laser light; and a main pulse laser light source generating the extreme ultraviolet light by irradiating the pre-plasma with the main pulse laser light.
Abstract:
A laser apparatus may include an optical resonator, a laser chamber, an optical loss adjustment mechanism, and a spectral line width adjustment mechanism. The optical resonator includes a mirror configured to reflect a part of light and a grating. The laser chamber is provided in the optical resonator and contains a laser gain medium, configured to emit a laser beam. The optical loss adjustment mechanism is provided in the optical resonator and configured to adjust an optical loss of the laser beam. The spectral line width adjustment mechanism is provided in the optical resonator and configured to adjust a spectral line width of the laser beam.
Abstract:
A target supply device may include a tank formed cylindrically with a first material, a cylindrical portion for covering the tank, the cylindrical portion being formed of a second material having higher tensile strength than the first material, a first lid formed of the second material and having a through-hole, the first lid being provided at one end in an axial direction of the cylindrical portion, a second lid formed of the second material and provided at another end opposite the one end in the axial direction of the cylindrical portion, and a nozzle provided to be in fluid communication with the interior of the tank and to pass through the through-hole, the nozzle being formed of the first material.
Abstract:
A transmissive optical device includes a crystal part including a c-axis in a crystal structure. The crystal part is configured to include a surface to receive a laser beam. The c-axis is arranged to be inclined relative to an incident direction of the laser beam in a plane of incidence of the laser beam.
Abstract:
An excimer laser apparatus includes a gas supply unit, connected to a first receptacle that holds a first laser gas containing halogen gas and a second receptacle that holds a second laser gas having a lower halogen gas concentration than the first laser gas, that supplies the first laser gas and the second laser gas to the interior of the laser chamber. Gas pressure control in which the gas supply unit supplies the second laser gas to the interior of the laser chamber or a gas exhaust unit partially exhausts gas from within the laser chamber, and partial gas replacement control in which the gas supply unit supplies the first laser gas and the second laser gas to the interior of the laser chamber and the gas exhaust unit partially exhausts gas from within the laser chamber sequentially, may be selectively performed.
Abstract:
A laser device includes a first actuator configured to adjust an oscillation wavelength of pulse laser light; a second actuator configured to adjust a spectral line width of the pulse laser light; and a processor configured to determine a target spectral line width by reading data specifying a number of irradiation pulses of the pulse laser light with which one location of an irradiation receiving object is irradiated and a difference between a shortest wavelength and a longest wavelength, control the second actuator based on the target spectral line width, and control the first actuator so that the oscillation wavelength periodically changes every number of the irradiation pulses between the shortest wavelength and the longest wavelength.
Abstract:
A laser system according to one aspect of the present disclosure includes a wavelength-variable first solid-state laser device configured to output a first pulse laser beam; a wavelength conversion system including a first nonlinear crystal configured to wavelength-convert the first pulse laser beam and a first rotation stage configured to change a first incident angle of the first pulse laser beam on the first nonlinear crystal; an excimer amplifier configured to amplify a pulse laser beam wavelength-converted by the wavelength conversion system; and a control unit configured to receive, from an external device, data of a target center wavelength of an excimer laser beam output from the excimer amplifier, control a wavelength of the first pulse laser beam in accordance with the instructed target center wavelength, and control the first incident angle on the first nonlinear crystal in accordance with an average value of the target center wavelength.