Abstract:
Provided is an apparatus for treating ballast water by using electrolysis. The apparatus includes a plurality of ballast tanks into which ballast water is introduced; a first pipe for a main stream of the ballast water supplied to the ballast tanks; a second pipe for a side stream of the ballast water branched from the main stream of the ballast water; an electrolytic cell configured to perform electrolysis of the side stream of the ballast water; a first salinity measuring unit configured to measure a salinity of the side stream of the ballast water introduced into the electrolytic cell; a second salinity measuring unit configured to measure a salinity of ballast water introduced into at least one of the ballast tanks; and a controller configured to control to supply the ballast water to the electrolytic cell from one of the plurality of ballast tanks based on the salinity of ballast water measured by the second salinity measuring unit, when the salinity of the side stream of the ballast water measured by the first salinity measuring unit is less than a threshold value.
Abstract:
Electrochemical separation devices are configured for lower energy consumption. Techniques for reducing shadow effect may involve providing distance between a spacer screen and an adjacent ion-selective membrane. A spacer having a screen that is thin relative to a surrounding frame may be used. Mild pressure may also be applied to a compartment to promote distance between a spacer screen and an adjacent ion-selective membrane.
Abstract:
The present invention provides a bioelectrochemical system for removing a polyvalent ion present in seawater etc., capable of producing electricity. The bioelectrochemical system according to the present invention comprises: an anode chamber comprising an anode which accommodates an electron produced when treating an organic material in wastewater with a microorganism; a cathode chamber comprising a cathode receiving the electron from the anode, for producing a hydroxide ion by reacting the electron with oxygen and water provided from the outside, and depositing the polyvalent ion inside an electrolyte by using the hydroxide ion; and an anion exchange membrane for blocking the polyvalent ion inside the electrolyte from moving to the anode chamber. Also, the present invention provides the bioelectrochemical system capable of removing the polyvalent ion present in seawater etc., and simultaneously producing hydrogen. The present invention comprises: the anode chamber, provided with the anode to which electrochemically active bacteria are attached, for producing the electron by having organic wastewater, as a substrate, injected thereto; the cathode chamber, provided with the cathode, for removing the polyvalent ion and simultaneously producing a hydrogen gas by having seawater, as an electrolyte, injected thereto; the anion exchange membrane for separating the anode chamber and the cathode chamber and preventing the polyvalent cation in seawater from moving to the anode chamber; and a power source connected between the anode and the cathode.
Abstract:
The present invention provides a method for the treatment of nitrogen-rich effluent and production of struvite comprising introducing the effluent in an electrolytic system and performing a first electrolytic treatment to the effluent in a first electrolytic reactor in order to organic matter that impact on nucleation of struvite, followed by a second electrolytic treatment in a second electrolytic reactor, thereby injecting Mg ions which react with NH4+ and orthophosphates from the effluent to form a struvite precipitate.
Abstract:
Electrocoagulation and sludge control apparatus and feed controller assembly and methods for effluent treatment are disclosed, the apparatus including a primary reaction chamber having electrodes mounted therein and a treated effluent output. A sludge chamber is defined below and integrated with the primary reaction chamber and has a selectively openable outlet. The feed controller assembly is intermediate the primary reaction chamber and the sludge chamber and has a length selected for distribution of all effluent feed water across substantially an entire length of the primary reaction chamber.
Abstract:
A wastewater treatment system and method for remediating wastewater and human waste that is self-contained and that has no connection to a municipal wastewater system and no connection to an electrical grid. The domestic toilet and wastewater treatment system can be powered by a photovoltaic panel as a source of electricity. The system includes an electrochemical cell that allows a waste stream to be disinfected in a few hours to a condition where no viable bacterial colonies can be cultured. The system produces a liquid stream that is suitable for system flushing or for uses in which non-potable water is acceptable. The system can generate hydrogen as a product that can be used to generate power. The system can generate nitrate, urea, ammonia and phosphate for use as fertilizer. The disinfected residual organic solids are also completely disinfected for potential use as an organic soil amendment for agriculture.
Abstract:
The present invention provides a method for the treatment of nitrogen-rich effluent and production of struvite comprising introducing the effluent in an electrolytic system and performing a first electrolytic treatment to the effluent in a first electrolytic reactor in order to organic matter that impact on nucleation of struvite, followed by a second electrolytic treatment in a second electrolytic reactor, thereby injecting Mg ions which react with NH4+ and orthophosphates from the effluent to form a struvite precipitate.
Abstract:
Provided is an open cell-type apparatus for producing sodium hypochlorite based on electrolysis using soft water and salt. The apparatus includes: a sodium hypochlorite generator including a plurality of electrode plates supported by a support, a flow channel for air flow provided above the support and the electrode plates, and an air intake hole and an air exhaust hole which communicate with the flow channel; a cooling unit for lowering a temperature of the flow channel; and a controller for controlling operation of the cooling unit by detecting a temperature of the sodium hypochlorite generator. The apparatus constantly maintains an optimum temperature of the sodium hypochlorite generator in order to produce sodium hypochlorite of a high concentration with high efficiency.
Abstract:
A treatment system provides treated or softened water to a point of use by removing at least a portion of any undesirable species contained in water from a water source. The treatment system can be operated to reduce the likelihood of formation of any scale that can be generated during normal operation of an electrochemical device. The formation of scale in the treatment system, including its wetted components, may be inhibited by reversing or substituting the flowing liquid having hardness-causing species with another liquid having a low tendency to produce scale, such as a low LSI water. Various arrangements of components in the treatment system can be flushed by directing the valves and the pumps of the system to displace liquid having hardness-causing species with a liquid that has little or no tendency to form scale.
Abstract:
A device for producing an electrochemically activated solution, such as an anolyte or a catholyte solution, by means of an electrolysis process, for instance EOW, on the basis of one or more raw materials, for instance water and salt, comprising an electrochemical reactor for performing the electrolysis process, measuring means for measuring various parameter values of the electrolysis process and/or the solution, and a first and second control unit which are connectable to the measuring means for the purpose of adjusting the electrolysis process on the basis of the parameter values until the parameter values meet predetermined target values, after which the solution is approved.