Abstract:
An anisotropic conductive film has a first connection layer and a second connection layer formed on surface of the first connection layer. The first connection layer is a photopolymerized resin layer, and the second connection layer is a thermo- or photo-cationically, anionically, or radically polymerizable resin layer. On the surface of first connection layer on the side of second connection layer, conductive particles for anisotropic conductive connection are arranged in a single layer. A region in which the curing ratio is lower than that of the surface of the first connection layer exists in a direction oblique to the thickness direction of the first connection layer. Alternatively, the curing ratio of a region relatively near another surface of the first connection layer among regions of the first connection layer in the vicinity of the conductive particles is lower than that of the surface of the first connection layer.
Abstract:
An anisotropic conductive film has first and second connection layers formed on a first layer surface. The first connection layer is a photopolymerized resin layer, and the second is thermo- or photo-cationically, anionically, or radically polymerizable resin layer. On the surface of the first connection layer on a second connection layer side, conductive particles for anisotropic conductive connection are in a single layer. The first connection layer has fine projections and recesses in a surface. An anisotropic conductive film of another aspect has first, second, and third connection layers layered in sequence. The first layer formed of photo-radically polymerized resin. The second and third layers are formed of thermo-cationically or thermo-anionically polymerizable resin, photo-cationically or photo-anionically polymerizable resin, thermo-radically polymerizable resin, or photo-radically polymerizable resin. On a surface of the first connection layer on a second connection layer side, conductive particles for anisotropic conductive connection are in a single layer.
Abstract:
The present disclosure describes a gastric jejunal tube having a gastric lumen and a jejunal lumen that run the length of the tube. The cross-sectional sizes of the lumens change from above to below the most distal gastric port. A method of making the gastric jejunal tube is also described.
Abstract:
Provided are a polarizing plate composition, a polarizing plate protective film, a polarizer, a polarizing plate, and a liquid crystal display device, which contain a compound represented by the following Formula (I), and a compound. In Formula (I), each of R1 and R2 represents a substituent. X represents an electron-withdrawing group, and Y represents a substituent having a heteroatom or a carbon atom as an atom bonded to a carbon atom substituted with —OR1. Y and X may form a ring by being bonded to each other.
Abstract:
A digitally printed heat transfer label and method of manufacture is disclosed. The heat transfer label and method of manufacture provides a more efficient process with less waste, as well as prevents halos. The method comprises adding adhesive powder to a digital image printed on a substrate to produce a high stretch, multi-color photographic quality label for the apparel industry.
Abstract:
There is provided a foamed sheet which takes only a short time to recover the thickness thereof after being compressed, and even if being subjected to repeated impacts, hardly decreases in the impact absorption. The foamed sheet according to the present invention comprises a foamed body formed of a resin composition comprising: a thermoplastic resin a and a silicone-based compound b having not more than 2,000 siloxane bonds; and/or a thermoplastic resin a′ having a silicone chain having not more than 2,000 siloxane bonds. The thermoplastic resin a is preferably at least one selected from the group consisting of acrylic polymers, rubbers, urethanic polymers and ethylene-vinyl acetate copolymers. The silicone-based compound b is preferably at least one selected from the group consisting of silicone oils, modified silicone oils and silicone resins.
Abstract:
An electrical connection material such as anisotropic conductive film that suppresses generation of warpage at electrical connection portion such as anisotropic conductive connection portion, and does not allow conduction reliability of connection body obtained by electrical connection such as anisotropic conductive connection to be reduced has a structure in which a conductive particle-containing layer is disposed between first insulating thermosetting resin composition layer and second insulating thermosetting resin composition layer. The conductive particle-containing layer is obtained by irradiating conductive particle-containing resin composition layer that contains radically polymerizable acrylate compound, photoradical polymerization initiator, non-radically polymerizable epoxy-based compound, and conductive particles with light, resulting in photoradical polymerization to form B stage state of conductive particle-containing resin composition layer. The first insulating thermosetting resin composition layer and second insulating thermosetting resin composition layer each contain non-radically polymerizable epoxy-based compound and thermal cationic polymerization initiator or thermal anionic polymerization initiator.
Abstract:
Provided is a sheet for sealing in which a semiconductor chip is to be embedded, and a surface of the sheet has a surface specific resistance value of 1.0×1012Ω or less.
Abstract:
The present invention relates to a method for manufacturing and/or treating thermally deformable reflective material, comprising steps for: providing a base material such as a plate material or a sheet material, arranging on the base material an adhesive layer in the form of a polymerizable monomer mixture, preferably a photoactivatable monomer mixture, positioning reflective particles on the monomer mixture, subjecting the monomer mixture to a curing process for providing a thermoplastic polymer mixture for the purpose of fixing the reflective particles relative to the base material.
Abstract:
Provided are a laminate capable of providing a temporary support for a member to be treated by a strongly adhesive force when the member to be treated is subjected to a mechanical or chemical treatment, and of easily releasing the temporary support for the treated member while not damaging the treated member, in which the TTV of the treated member is excellent; a composition for forming a protective layer; a composition for forming an adhesive layer; and a kit.The laminate has, on a support (A), an adhesive layer having a softening point of 250° C. or higher (B), a protective layer (C), and a device wafer (D) in this order, in which the adhesive layer (B) is a cured product of an adhesive layer precursor and the adhesive layer precursor has a polymerizable compound (b-1).