Abstract:
A method and structure are provided for implementing flexible circuits of various electronic packages and circuit applications. A meshed reference plane includes a variable mesh pitch arranged for control of mechanical flexibility. A dielectric core separates a signal layer from the variable pitch meshed reference plane. An electrically conductive coating covers the surface of the variable pitch meshed reference plane yielding substantially constant signal impedance for the signal layer.
Abstract:
A circuitized substrate in which two conductive layers (e.g., electroplated copper foil) are bonded (e.g., laminated) to an interim dielectric layer. Each of the two foil surfaces which physically bond to the dielectric are smooth (e.g., preferably by chemical processing) and include a thin, organic layer thereon, while the outer surfaces of both foils are also smooth (e.g., preferably also using a chemical processing step). One of these resulting conductive layers may function as a ground or voltage plane while the other may function as a signal plane with a plurality of individual signal lines as part thereof. An electrical assembly and an information handling system utilizing such a circuitized substrate are also provided, as is a method of making the substrate.
Abstract:
A circuit board comprises signaling through-holes that pass through a plurality of layers, including signal trace and digital ground plane layers, and power reference plane layers. Clearances are set to achieve a desired impedance characteristic for the through-holes. At a power reference plane layer, the clearance is defined around multiple neighboring through-holes.
Abstract:
A high speed flexible interconnect cable includes a number of conductive layers and a number of dielectric layers. Conductive signal traces, located on the conductive layers, combine with the dielectric layers to form one or more high speed electrical transmission line structures. The transmission line structure may be realized as a grounded coplanar waveguide structure. The cable can be coupled to destination components using a variety of connection techniques. The cable can also be terminated with any number of known or standardized connector packages.
Abstract:
A novel backplane interconnection system that is useful in the telecommunication and data process industries for ultra high speed backplane systems. It is capable of transmitting digital signals with bandwidths of 10 GHz and beyond. The invention provides high performance at a low cost of manufacture. It is suitable for use in a wide variety of system applications. One embodiment of the invention comprises an air dielectric and copper conductor matched impedance transmission line system that interconnects daughter cards in a conventional backplane configuration. The high speed transmission-line structure is continuous through the backplane-daughter card and return path. Such embodiment are also integrated with conventional printed circuit backplanes or be a stand-alone device.
Abstract:
Disclosed herein is a rigid flexible PCB having openings. The rigid flexible PCB includes a flexible section with flexibility and rigid sections being formed at the edges of the flexible section with mechanical stiffness. The flexible section comprises a flexible plane. The flexible plane comprises a base insulating layer; a wire conducting layer being adhered to one of the top side and the bottom side of the base insulating layer; and a plane conducting layer adhered to the other of the top side and the bottom side of the base insulating layer. The plane conducting layer has a plurality of openings being formed as a mesh structure. According to the rigid flexible PCB of the invention, the flexibility of the flexible section and the characteristic impedance of signal wire traces may be improved.
Abstract:
An interference suppressor (10) for suppressing high-frequency interference emissions of a direct current motor (26) that is drivable in a plurality of stages and/or directions is proposed, having a plurality of capacitors (16) located on a first side (12) of a printed circuit board (14) and having a plurality of first conductor tracks (18), located on the first side (12) of the printed circuit board (14), for putting the various capacitors (16) into contact with a ground terminal (20), and having a first terminal (22) and at least one further terminal (24) for the individual stages of the direct current motor (26), the first terminal (22) and the at least one further terminal (24) being put into contact with a first connection line (48) for the first stage and at least one further connection line (50) for the at least one further stage of the direct current motor (26). The interference suppressor (10) is characterized in that a ground face (34) is located on a further side (32), diametrically opposite the first side (12), of the printed circuit board (14), and the first connection line (48) and the at least one further connection line (50) are fed through in insulated fashion relative to the ground face (34).
Abstract:
A method including modifying a characteristic impedance along a length of a plating bar of a substrate package. An apparatus including a package substrate including a plurality of transmission lines therethrough, a portion of the plurality of transmission lines each including a plating bar coupled thereto, wherein the plating bar comprises portions having different characteristic impedance along its length. A system including a computing device including a microprocessor, the microprocessor coupled to a printed circuit board through a substrate, the substrate including a plurality of transmission lines therethrough, a portion of the plurality of transmission lines each including a plating bar coupled thereto, wherein the plating bar comprises portions having different characteristic impedance along its length.
Abstract:
A high speed flexible interconnect cable includes a number of conductive layers and a number of dielectric layers. Conductive signal traces, located on the conductive layers, combine with the dielectric layers to form one or more high speed electrical transmission line structures. The transmission line structure may be realized as a grounded coplanar waveguide structure. The cable can be coupled to destination components using a variety of connection techniques. The cable can also be terminated with any number of known or standardized connector packages.
Abstract:
A chip-on-film package may include a tape wiring substrate, a semiconductor chip mounted on the tape wiring substrate, and a molding compound provided between the semiconductor chip and the tape wiring substrate. The tape wiring substrate may include a film having upper and lower surfaces. Vias may penetrate the film. An upper metal layer may be provided on the upper surface of the film and include input terminal patterns and/or output terminal patterns. The input terminal patterns may include ground terminal patterns and/or power terminal patterns. A lower metal layer may be provided on the lower surface of the film and include a ground layer and/or a power layer. The ground layer and the power layer may cover at least a chip mounting area.