Abstract:
A method removes heat from a densely packed electronic assemblage. Densely packed electronic assemblage has a substrate medium for supporting at least one heat generating component and means for reducing the temperature of the at least one heat generating component. A heat sink cooperates with the heat removing element for reducing heat of the heat generating component by absorbing heat from the heat generating component.
Abstract:
A circuitized substrate assembly and method for making same wherein the assembly includes individual circuitized substrates bonded together. The substrates each include at least one opening, only one of which is substantially filled with a conductive paste prior to bonding. Once bonded, the paste is also partially located within the other opening to provide an effective electrical connection therewith.
Abstract:
A filling system includes a pressurized source of fill material and a pressure fill head wherein the fill head also includes a heating element positioned so as to transfer heat to fill material passing through the fill head. A method of filling holes using a fill material passing through a pressure fill head includes the steps of causing fill material to enter the fill head, modifying the viscosity of the fill material while it is within the fill head, and causing the modified viscosity fill material to exit the fill head and enter at least one hole.
Abstract:
The present invention has for its object to provide a process for manufacturing multilayer printed circuit boards which is capable of simultaneous via hole filling and formation of conductor circuit and via holes of good crystallinity and uniform deposition can be constructed on a substrate and high-density wiring and highly reliable conductor connections can be realized without annealing. The present invention is related to a process for manufacturing multilayer printed circuit boards which comprises disposing an interlayer resin insulating layer on a substrate formed with a conductor circuit, creating openings for formation of via holes in said interlayer resin insulating layer, forming an electroless plated metal layer on said interlayer resin insulating layer, disposing a resist thereon, performing electroplating, stripping the resist off and etching the electroless plated metal layer to provide a conductor circuit and via holes, wherein the electroplating is performed intermittently using said electroless plated metal layer as cathode and a plating metal as anode at a constant voltage between said anode and said cathode.
Abstract:
Apparatus and methods are provided for a rigid metal core carrier substrate. The metal core increases the modulus of elasticity of the carrier substrate to greater than 20 GPa to better resist bending loads and stresses encountered during assembly, testing and consumer handling. The carrier substrate negates the need to provide external stiffening members resulting in a microelectronic package of reduced size and complexity. The coefficient of thermal expansion of the carrier substrate can be adapted to more closely match that of the microelectronic die, providing a device more resistant to thermally-induced stresses. In one embodiment of the method in accordance with the invention, a metal sheet having a thickness in the range including 200-500 nullm and a flexural modulus of elasticity of at least 20 GPa is laminated on both sides with dielectric and conductive materials using standard processing technologies to create a carrier substrate.
Abstract:
A substrate for mounting an electronic part or parts thereon, which comprises a core substrate and at least a set of insulation layer and patterned wiring line layer, which is formed on the insulation layer, at at least one side of the core substrate, the core substrate having holes, in each of which a lead pin of the electronic part to be mounted is to be inserted, and being provided with lands which surround the opening of the hole and to which the lead pin inserted in the hole is to be bonded, wherein the insulation layer or layers at at least one side of the core substrate has bores, which expose the land at their bottoms, and communicate with the hole. A method of manufacturing such a substrate is also disclosed.
Abstract:
A circuit board comprises a board substrate including a substrate layer formed with a pad on an upper surface thereof, and a metal piece soldered on the pad. At least one through-hole including an internal wall formed with a conductive film is provided at a portion corresponding to the pad on the substrate layer. The through-hole is filled with a predetermined filler for closing at least an open mouth of the through-hole at the upper surface of the substrate layer. The pad is connected integrally with the conductive film on the internal wall of the through-hole.
Abstract:
A method of manufacturing a printed circuit board through-hole connection includes forming a through-hole by removing material from the first side of the printed circuit board until the backing and then slightly into the first side of the backing providing a hole. Next, plating through the hole connecting the backing layer, ground layer, and signal layer. Now the plating of the signal layer is removed without removing the connection from the ground layer to the backing. Finally, the hole is filled from the first side of the printed circuit board. A method of manufacturing a MMIC printed circuit board through-hole connection includes forming a through-hole by removing material from the first side of the MMIC printed circuit board through the first signal layer, through the MMIC until the second signal layer, and then slightly into the top side of the second signal layer. Once the material is removed, an electrical connection is provided to the first signal layer, the MMIC and the second signal layer. A printed circuit board through-hole connection that includes an assembled layout of a printed circuit board and formed through holes by material removed from the first side of the printed circuit board up to the backing and then slightly into the top portion of the backing. It further includes plated through-holes that connect the backing, a ground layer and a signal layer, removed plating from the signal layer without the connection removed from the ground layer to the backing and filled through-holes from the first side with a non conductive filler.
Abstract:
A printed wiring board is formed by a printed wiring substrate having a plurality of a wiring layer, and a thermal expansion buffering sheet having lower coefficient of thermal expansion than that of said printed wiring substrate, which is integrally laminated on a surface of the printed wiring substrate.
Abstract:
A photo-setting and thermosetting resin composition comprises (I) a partial adduct of epoxy resin with unsaturated aliphatic acid, (II) (meth)acrylates, (III) a photocrosslinking agent, (IV) liquid epoxy resin, and (V) a latent curing agent. The resin composition can be easily charged and plugged into a through-hole, does not drip down, and can be effectively photo-set and thermoset. A photo-set product prepared of the resin composition can be easily polished. A plugged-through-hole printed wiring (substrate) board prepared of the resin composition does not cause defects such as hollows, cracks, blisters, peelings and so on, is excellent in solder-resistance, does not corrode a metal part, and can produce an appliance of high reliability and long life which does not occur short circuit and poor electrical connection.