Abstract:
A catalyst which is a hollow microsphere comprising an outer shell in which there are feeder pores and an active ingredient arranged within the shell. The microsphere has a diameter ranging from 20 to 120 microns and the shell has a thickness ranging from 0.1 to 20.0 microns. The active ingredient fills 1.0% to 100% of the void space within the microsphere.
Abstract:
The hollow plastic microspheres 17 are made by forming a liquid film of thermoplastic or thermosetting plastic composition across a coaxial blowing nozzle 5, applying a blowing gas 10 at a positive pressure to the inner surface of the plastic film to blow the film and form an elongated cylinder shaped liquid film 12 of plastic. A transverse jet 13 is used to direct an entraining fluid 14 over and around the blowing nozzle 5, at an angle to the axis of the blowing nozzle. The entraining fluid 14 as it passes over and around the blowing nozzle 5 fluid dynamically induces a pulsating or fluctuating pressure field at the opposite or lee side of the blowing nozzle in the wake or shadow of the coaxial blowing nozzle. The continued movement of the entraining fluid 14 over the elongated cylinder 12 produces asymmetric fluid drag forces on the cylinder and closes and detaches the elongated cylinder from the coaxial blowing nozzle and the detached cylinder by the action of surface tension forms into a spherical shape 17.The hollow plastic microspheres can be made from low heat conductivity plastic compositions and blown with a low heat conductivity gas and used to make improved insulation materials and composites and insulating systems. The hollow plastic microspheres 17 can be made to contain a thin transparent or reflective metal coating 20 deposited on the inner wall surface of the microspheres.
Abstract:
A method of manufacturing spherical alumina comprising preparing a basic aluminum chloride solution having an aluminum concentration in the range of from 7 wt.% to 12 wt.% and a weight ratio of aluminum to chloride in the range of from 0.3 to 0.8 by reacting gibbsite with an aqueous hydrochloric acid solution at an elevated temperature, preparing an alumina hydrosol having an aluminum concentration in the range of from 9 wt.% to 15 wt.% and a weight ratio of aluminum to chloride in the range of from 0.8 to 1.5 by reacting the thus prepared solution with metallic aluminum at an elevated temperature, commingling this hydrosol with a gelling agent, dispersing the resulting mixture in the form of droplets in a suspending medium thereby to form hydrogel particles, ageing the thus obtained particles in said suspending medium and then an aqueous ammonia, washing with water, drying and calcining. The thus obtained spherical alumina is substantially free from sodium in spite of employing gibbsite as raw material.
Abstract:
The hollow glass vacuum microspheres are made by forming a liquid film of molten glass across the coaxial blowing nozzles, applying the metal vapor blowing gas at a positive pressure on the inner surface of the glass film to blow the film which combines with the centrifugal force to form an elongated cylinder shaped liquid film of molten glass. A transverse jet is used to direct the inert entraining fluid over and around the blowing nozzle at an angle to the axis of the blowing nozzle. The entraining fluid as it passes over and around the blowing nozzle fluid dynmically induces a pulsating or fluctuating pressure field at the opposite or lee side of the blowing nozzle in the wake or shadow of the coaxial blowing nozzle. The continued movement of the entraining fluid over the elongated cylinder produces asymmetric fluid drag forces on the cylinder and closes and detaches the elongated cylinder from the coaxial blowing nozzle and the detached cylinder by the action of surface tension forms into a spherical shape.Quench nozzles are disposed radially away from the rotor and direct cooling fluid downwardly at and into contact with the hollow glass amicrospheres to rapidly cool and solidify the molten glass to form a hard, smooth hollow glass microsphere and where metal vapor blowing gas is used to cool and condense the metal vapor and to deposit the metal vapor on the inner wall surface of the microsphere as a thin metal coating.
Abstract:
Spheroidal alumina shaped articles are prepared by dispersing an ungelled admixture of an alumina sol and hexamethylenetetramine, in the form of droplets, into a liquid forming medium which is but very slightly miscible with water, said medium being at a temperature of between about 50.degree. and 105.degree. C., next aging the alumina spheres thus shaped at a temperature greater than about 105.degree. C. at superatmospheric pressure, then secondarily aging said alumina spheres in a basic medium, and thence washing, drying and calcining said aged alumina spheres.The resultant shaped articles are useful, e.g., catalysts or catalyst carriers/supports.
Abstract:
An amorphous aluminosilicate sol with uniform size particles is prepared by a process comprising (1) preparing a sol of discrete colloidal particles of uniform size, the surface of which consists of a coating of an aluminosilicate by separately and simultaneously adding a silica sol or an alkali metal silicate solution and an alkali metal aluminate solution to a heel sol of uniform-sized colloidal particles of aluminosilicate, silica or refractory metal oxide(s) at a certain rate of addition at constant pH of 9 to 12 and T of 50.degree. to 100.degree. C. to deposit or coat aluminosilicate onto surface of heel sol particles, (2) ion exchanging the alkali metal ions of the sol from (1) for ammonium ions, and (3) filtering the sol from (2) to remove the cation exchange resin and optionally concentrating the sol to a solids content of up to 60% by weight.
Abstract:
This invention comprises a method of achieving a highly efficient use of catalyst in conducting hydrogenation reactions of hydrocarbons in the liquid state by means of solid catalysts. The catalyst is wholly contained in a microporous layer no thicker than 200 microns deposited on the outside surface of otherwise inert support particles. The catalyst particles, of the order of 10 mm diameter, are contained in a fixed, vertical, packed bed, and are brought into contact with the liquid hydrocarbon and hydrogen by passing the two fluids in cocurrent flow, either upwards or downwards, through the bed at substantially greater gas velocities than are usually employed in fixed bed catalytic reactors used for hydrogenating hydrocarbons in the liquid state. The effect of the high gas velocity is to achieve substantially higher heat and mass transfer rates among the three phases (catalyst, liquid hydrocarbon, and gaseous hydrogen) than are achievable under conventional conditions of operation of fixed bed catalytic reactors used for hydrogenating hydrocarbons in the liquid state. The combined effects of the high gas velocity and the mode of deposition of the catalytically active components on the catalyst support, are the achievement of a large global reaction rate in the reactor, combined with a high internal effectiveness factor for the catalyst. For fast hydrogenation reactions, for which the invention is most advantageously employed, a comparable efficiency of catalyst utilization can at present be achieved only by using catalyst in the form of powder or granules so small as to preclude their use in a fixed bed reactor.
Abstract:
A process for preparing catalysts in the form of beads comprising at least a catalytic agent and an alumina carrier, said process comprising polymerizing in a hot and substantially water-immiscible fluid, an aqueous mixture which comprises alumina hydrogel, alumina hydrosol and a compound capable of generating a catalytic agent and a water soluble monomer whose uncross-linked polymer is water soluble or forms a gel, such aqueous mixture being dispersed as droplets into the hot fluid, recovering beads from said water-immiscible fluid and drying and calcining said beads.
Abstract:
A process for preparing spheroidal silica-alumina particles containing alumina in an amount at least equal to that of silica, comprising dispersing as droplets into a hot and practically water-immiscible fluid, an aqueous mixture comprising an alkali silicate, alumina hydrogel, perchloric acid and a water-soluble monomer whose uncross-linked polymer is water-soluble or forms a gel, alkali silicate and alumina hydrogel being used in proportions corresponding to 0.5 to 50% by weight of SiO.sub.2 and 99.5 to 50% by weight of Al.sub.2 O.sub.3, and maintaining the droplets of the mixture in the fluid until a substantial polymerization of the monomer occurs.
Abstract translation:一种用于制备至少等于二氧化硅的氧化铝的球状二氧化硅 - 氧化铝颗粒的方法,其包括以液滴的形式分散到热的和实际上与水不混溶的流体中,包含碱性硅酸盐,氧化铝水凝胶,高氯酸和 其交联聚合物是水溶性的或形成凝胶的水溶性单体,碱性硅酸盐和氧化铝水凝胶的用量按照SiO 2为0.5-50%(重量)和99.5-50%(重量)Al 2 O 3,并维持 流体中混合物的液滴直到发生单体的基本聚合。
Abstract:
A process for producing catalysts to hydrotreat petroleum fractions containing, after thermal treatment, an oxide or a sulphide of a Group VIII metal and an oxide or a sulphide of a Group VI B metal and a support consisting essentially of alumina, said process comprising preparing said catalyst in the form of beads by agglomeration of alumina by polymerizing in a hot and substantially water-immiscible fluid, an aqueous mixture which consists essentially of alumina hydrogel, alumina hydrosol and a water-soluble monomer whose uncrossed-linked polymer is water-soluble or forms a gel and then by dispersing said mixture as droplets, in a polymerization zone.