Abstract:
A method of forming a space includes a step of tenting, on a substrate having a recessed portion, a dry film including a dry film material that is to be a top plate on the recessed portion. The step of tenting the dry film includes a press period and a release period and performs a press-release cycle of the press period and the release period a plurality of times, a pressed state in which the dry film is pressed against the substrate by using a pressing member is maintained during the press period, and a released state in which the pressed state is released is maintained during the release period.
Abstract:
A MEMS device includes a drive region having a stacked structural body in which a first electrode layer, a first dielectric layer, and a second electrode layer are stacked in that order. The stacked structural body extends from the drive region to a non-drive region that is outer than the drive region and, in an extending direction of the stacked structural body, the first electrode layer and the first dielectric layer extend farther outward than the second electrode layer. A second dielectric layer covering an end of the second electrode layer in the extending direction is stacked on the second electrode layer in the non-drive region and the first dielectric layer that is formed outer in the extending direction than the second electrode layer. A third electrode layer electrically connected to the second electrode layer is stacked on the second dielectric layer and on the second electrode layer in a region outside the second dielectric layer. In the extending direction, the end of the second electrode layer is formed more to a drive region side than a second dielectric layer-side end of the third electrode layer.
Abstract:
A MEMS device includes a first substrate and a second substrate that is disposed laminated on the first substrate and has a piezoelectric element on the first substrate side, in which the first substrate and the second substrate are substantially the same size, and in planar view, an end of the first substrate and an end of the second substrate are disposed at substantially the same position.
Abstract:
Fluidic cartridges, and manufacture thereof, having a plurality of circuit element subtypes containing pneumatically operated diaphragm members, where the diaphragm materials are selected for yield point, chemical resistance, breathability and other properties individually according to the fluidic element subtype are provided. A process of in-situ edge-bonded decoupage for forming diaphragm members inside a cartridge, and fluidic circuits having diaphragm members as active and passive circuit elements, including pumps, valves, vents, waste receptacles, reagent reservoirs, and cuvettes with optical windows, where the material composition of each individual diaphragm member may be selected from an assortment of materials during manufacture are also provided.
Abstract:
We describe a method of layer-by-layer deposition of a plurality of layers of material onto the wall or walls of a channel of a microfluidic device, the method comprising: loading a tube with a series of segments of solution, a said segment of solution bearing a material to be deposited; coupling said tube to said microfluidic device; and injecting said segments of solution into said microfluidic device such that said segments of solution pass, in turn, through said channel depositing successive layers of material to perform said layer-by-layer deposition onto said wall or walls of said channel. Embodiments of the methods are particularly useful for automated surface modification of plastic, for example PDMS (Poly(dimethylsiloxane)), microchannels. We also describe methods and apparatus for forming double-emulsions.
Abstract:
A substrate processing method for forming a through-hole in a substrate by reactive ion etching includes preparing a substrate that has a first surface and a second surface and on the first surface side of which a first layer and a second layer are disposed, the second surface being on the opposite side to the first surface, the second layer covering the first layer; and performing reactive ion etching on the substrate from the second surface to form a through-hole extending through the substrate from the first surface to the second surface, the reactive ion etching being performed to reach the first layer. The etching rate of the second layer for the reactive ion etching is lower than that of the first layer.
Abstract:
An integrated semiconductor heating assembly includes a semiconductor substrate, a chamber formed therein, and an exit port in fluid communication with the chamber, allowing fluid to exit the chamber in response to heating the chamber. The integrated heating assembly includes a first heating element adjacent the chamber, which can generate heat above a selected threshold and bias fluid in the chamber toward the exit port. A second heating element is positioned adjacent the exit port to generate heat above a selected threshold, facilitating movement of the fluid through the exit port away from the chamber. Addition of the second heating element reduces the amount of heat emitted per heating element and minimizes thickness of a heat absorption material toward an open end of the exit port. Since such material is expensive, this reduces the manufacturing cost and retail price of the assembly while improving efficiency and longevity thereof.
Abstract:
Fluid ejection nozzles having a tapered section leading to a straight walled bore are described. Both the tapered section of the nozzle and the straight walled bore are formed from a single side of semiconductor layer so that the tapered section and the bore are aligned with one another, even when an array of nozzles are formed across a die and multiple dies are formed on a semiconductor substrate.
Abstract:
A method of manufacturing a nozzle plate includes: a mask pattern layer forming step of, with respect to a laminated substrate constituted of a first silicon substrate having a (111) surface orientation and a second silicon substrate having a (100) surface orientation, forming a frame-shaped mask pattern layer on the second silicon substrate; a non-through hole forming step of forming a straight section of the nozzle in the first silicon substrate; a protective film forming step of forming a protective film over a first portion on the second silicon substrate that is not covered with the mask pattern layer, and over inner surfaces of the first and second silicon substrates defining the non-through hole; and an anisotropic etching step of anisotropically etching the second silicon substrate so as to form a tapered section of the nozzle defined with {111} surfaces exposed in the second silicon substrate by the anisotropic etching.
Abstract:
A silicon structure of the present invention is provided with a silicon substrate (1) to become a base, and a plurality of fibrous projections (2) made of silicon dioxide and directly joined to a silicon-made surface (1a) of the silicon substrate (1). By arbitrarily constructing an area where these fibrous projections (2) are formed in a predetermined area, it is possible to render the area to have at least either hydrophilicity or water retentivity, so as to provide a silicon structure useful for a variety of devices.