Abstract:
A process for depositing a compact film of particles on an internal surface of a part, including: a) placing the part in a carrier liquid; b) generating a carrier liquid stream in a hollow of the part towards a surface of the carrier liquid, to create a protuberance; c) dispensing the particles to form a compact film floating on the liquid between a contact line and an upstream front of particles; and d) transferring the film onto the internal surface by operating a relative displacement between the part and the surface of the carrier liquid, while continuing dispensing the particles on the upstream front.
Abstract:
A coating apparatus includes: a supply frame for supplying slurry into channels from one end of a honeycomb substrate; and a blower for evacuating a wind box. An annular resistive member is attached to the circumference of the opening of the wind box, and the honeycomb substrate is arranged, with a spacer placed on the resistive member. When the blower is operated and the slurry is supplied, the coat width of the slurry coated on the inner surfaces of the channels in an outer circumferential area is less than the coat width of the slurry coated on the inner surfaces of the channels in a center area.
Abstract:
The present invention is directed to a certain method of catalytically coating a honeycomb monolith, in particular a so-called flow-through monolith. These types of monoliths can be quite precisely be coated by a method using an indirect coating via a displacement body. The present invention further improves this method through controlling the process by monitoring the certain measures.
Abstract:
The present inventions is concerned with an apparatus and a method of improving the accuracy of coating a ceramic or metallic honeycomb body, which can usually be used as a catalyst in automotive exhaust mitigation. The invention achieves to directly test whether the coating slurry in the coating chamber is ready to be submitted to the monolith or needs to be replaced before coating the monolith.
Abstract:
A process for depositing a compact film of particles on an internal surface of a part, including: a) placing the part in a carrier liquid; b) generating a carrier liquid stream in a hollow of the part towards a surface of the carrier liquid, to create a protuberance; c) dispensing the particles to form a compact film floating on the liquid between a contact line and an upstream front of particles; and d) transferring the film onto the internal surface by operating a relative displacement between the part and the surface of the carrier liquid, while continuing dispensing the particles on the upstream front.
Abstract:
A coating device for coating composite cellulose honeycomb support parts (1), each having a multiplicity of channels (5, 6) extending in an axial direction, having an impregnation coating to increase fire- and/or water-resistance and/or mechanical stability. A conveyor (8) is provided for transporting the composite cellulose honeycomb support parts (1) in a conveying direction along a filling station (9), which is configured in such a manner that the filling station (9) can be used to pour impregnation agent (12) from above into the channels (5, 6) of the composite cellulose honeycomb support parts (1), and damming agents (16) are provided in the region of the filling station (9) and are configured in such a manner that the impregnation agent (12) is prevented or at least delayed from draining downwards out of the channels (5, 6) in such a manner that the impregnation agent (12) can build up in the channels (5, 6), in particular up to an upper side of the composite cellulose honeycomb support parts (1), and for an emptying station (19) to be arranged downstream of the filling station (9) in the conveying direction, at which emptying station excess impregnation agent (12) can drain out of the channels (5, 6) in the composite cellulose honeycomb support parts (1).
Abstract:
Systems and methods for altering the appearance and/or texture of a surface include installing a vest relative to the surface such that an exterior side of the vest, spaced from the surface, defines a fluid-tight space between the surface and the exterior side of the vest. Visual media can be provided into and from the fluid-tight space using one or more ports, the exterior side being at least partially transparent or translucent such that the visible media within the fluid-tight space are visible through the exterior side of the vest, thereby allowing the repeatable alteration of the appearance of the surface.
Abstract:
A method of coating a substrate with a liquid comprising a catalyst component, which substrate comprises a plurality of channels, wherein the method comprises: (a) holding the substrate vertically; (b) introducing the liquid into the substrate through the open ends of the channels at a lower end of the substrate; and (c) after the lower end of the substrate has been part-filled with the liquid, applying a vacuum to the open ends of the channels at the upper end of the substrate while introducing the liquid into the substrate.
Abstract:
We describe a method of layer-by-layer deposition of a plurality of layers of material onto the wall or walls of a channel of a microfluidic device, the method comprising: loading a tube with a series of segments of solution, a said segment of solution bearing a material to be deposited; coupling said tube to said microfluidic device; and injecting said segments of solution into said microfluidic device such that said segments of solution pass, in turn, through said channel depositing successive layers of material to perform said layer-by-layer deposition onto said wall or walls of said channel. Embodiments of the methods are particularly useful for automated surface modification of plastic, for example PDMS (Poly(dimethylsiloxane)), microchannels. We also describe methods and apparatus for forming double-emulsions.
Abstract:
A method and apparatus for applying a uniform membrane coating to a substrate, such as a honeycomb structure, having a plurality of through-channels, wherein the through-channels have an average diameter of less than or equal to 3 mm. The method includes providing a liquid precursor comprising membrane-forming materials to the substrate and applying a pressure differential across the substrate. The pressure differential causes the liquid precursor to travel uniformly through the through-channels, depositing the membrane-forming materials on the walls of the through-channels and forming the membrane on the walls of the through-channels. The apparatus includes a chamber capable of holding the substrate and of maintaining a pressure differential across the plurality of through-channels.