Abstract:
A processing method for treating organics-containing fluids including a ultraviolet (UV) disinfection step and a biological processing step. The UV light source employed in the UV disinfection step is positioned outside the fluid to be disinfected and the fluid is disinfected via exposure to at least one UV dose zone outside the fluid being treated wherein UV light is projected into the at least one dose zone. The UV light source may be presented in a vertical riser configuration, wherein the UV light source is positioned above the fluid to be treated and projecting a UV dose zone downward toward and into the fluid to be treated, with the fluid moving upward toward the UV light source. At least one interface plate is used to provide a surface zone for UV disinfection above the fluid and to provide additional treatment means for balancing pH, affecting effluent chemistry, reducing organic chemicals, and the like. Alternatively, the UV light source may be presented in a planar or horizontal design, wherein the UV light source is positioned above the fluid to be treated and projecting a UV dose zone downward toward and into the fluid to be treated, with the fluid moving in a direction substantially perpendicular to the UV dose zone. After neutralization, the fluid is directed to the biological processing step, wherein microbes or enzymes are contacted with the fluid to effect metabolism of the organics in the fluid. The process may be used to reduce the organic load of animal and non-animal wastes, as well as produce a desired product from microbial foodstocks or enzyme substrates.
Abstract:
A lamp assembly configured to inductively receive power from a primary coil. The lamp assembly includes a lamp circuit including a secondary and a lamp connected in series. In a first aspect, the lamp circuit includes a capacitor connected in series with the lamp and the secondary to tune the circuit to resonance. The capacitor is preferably selected to have a reactance that is substantially equal to or slightly less than the reactance of the secondary and the impedance of the lamp. In a second aspect, the lamp assembly includes a sealed transparent sleeve that entirely encloses the lamp circuit so that the transparent sleeve is fully closed and unpenetrated. The transparent sleeve is preferably the lamp sleeve itself, with the secondary, capacitor and any desired starter mechanism disposed within its interior.
Abstract:
Method and apparatus for treating a pressurized liquid. The apparatus includes pressurized liquid treatment chamber having a window transmissive to UV light; a UV light source outside of the chamber to emit UV light into the chamber; a shaft which extending between inlet and outlet ends of the chamber which turns about a central axis of the chamber; a flexible cleaning member affixed to the shaft and engaging an interior surface of the window; and at least one member extending radially from the shaft into the treatment chamber to disrupt axial flow of water through the chamber.
Abstract:
A system for treating water includes an ozone injector combined with a monitoring apparatus 400 that includes a flow meter 402 and a pressure sensor 404. The monitoring apparatus includes a flow path 424 having inlets 420, 422 communicating with the inlet 304 and outlet 306 of the ozone injector main water pipe 302. The flow path inlets are spaced respectively upstream and downstream of the ozone injection point. In operation, water filtered in filter 108 is ozonized in venturi 316 and then sterilized by UV lamp 210. The lamp is also used to generate ozone that is delivered to the venturi via check valve 308. The pressure sensor positioned within the flow path produces signals to control the switch of the UV lamp. The flow meter is used to determine when the filter should be replaced. The pressure sensor may be in the form of a silicon chip.
Abstract:
Apparatus (10), systems and methods are disclosed for treating a biological fluid with light. A container (206) of biological fluid is introduced into a fluid treatment chamber (40) where it is contacted with light provided by one or more light sources (60, 70) in proximity to the fluid treatment chamber (40). A light sensing system (650) senses the intensity of illumination of the light. A radiometer (460) may be inserted into fluid treatment chamber (40) to calibrate the light sensing system (650). An electronic control system (600) utilizes an interface circuit board (606) to interface a computer circuit board (602) to a display panel (37), a user interface panel (39, 39a), a relay circuit board (640), light sensors 404 and various other sensors (649). A detector (385) senses agitating movement of a tray (90) that contains biological fluids. Methods include calibrating (781-785), sensing (770-773) and correcting (774-775) light intensity measurements, and determining the length of treatment (776) to reach a desired illumination dose. A radiometer (460) is equipped with a plurality of light sensors (469) disposed on both sides to measure light intensity in chamber (40) and to provide a reference for calibrating light sensing system (650).
Abstract:
A chemical actinometer for determining the absolute level of exposure to ultraviolet light of a fluid to be treated for disinfection purposes. The actinometer includes a translucent sample cell through which the chemical actinometric fluid flows. The area of exposure of the actinometric fluid is controlled by allowing the ultraviolet light to pass through only a portion of the sample cell. A suitable actinometric fluid is a combination of iodide and iodate in a solution. The sample cell is positioned within an ultraviolet disinfection reactor at a position to receive ultraviolet light from the ultraviolet light source.
Abstract:
A hand-held water purification system includes an outwardly-extending pen-light sized configuration of solid state devices, such as, UV-light emitting diodes, that emit ultraviolet light in the germicidal range. The system operates to turn on the solid state devices under the control of one or more switches that are, in turn, under the control of a liquid-level sensor that senses when the configuration is immersed in the water. The system may also include a timing circuit that turns the solid state devices off a predetermined time after they are turned on. In one embodiment, a battery powers the various components of the system. In an alternative embodiment, the system power is provided by a base that plugs into a conventional power outlet. The base includes a converter that converts the signal provided through the power outlet to a signal that is appropriate to power the components.
Abstract:
A system and method for enhancing the flux and separation properties of water filtration membranes by oxidizing raw or processed water constituents with direct photolysis of the water matrix by pulsed blackbody UV, yielding ozone and hydrogen peroxide, hydroxyl radicals and other short lived oxidizing species. The result thereof, causing precipitation of inorganic molecules or organically complexed minerals, partial or complete mineralization of organic molecules and the deactivation or destruction of microbes including: virus, bacteria and protozoa. The system and method comprises a pulsed blackbody, deep-UV reactor having at least one treatment chamber, the reactor having a conveying assembly to convey the water to be treated into the chamber; a filter assembly to screen the UV treated water; a caustic supply means for the post-treatment of water; a recovering assembly recovering the permeate at an outlet of the filtration means. The effect of such UV water treatment is multifaceted. One aspect is the reduction of the transmembrane pressure (TMP), another is the reduction of duration of backwash and caustic cleaning cycles. Also, the oxidation of iron and manganese to insoluble compounds, without the addition of oxidizing agents, does not harm the membranes. Iron and manganese turn into hydroxide crystals trapped by the filtration membrane and separated from the permeate. These effects integrate to enhance the water flux through the filter membrane.
Abstract:
Method and apparatus for treating a pressurized liquid. The apparatus includes pressurized liquid treatment chamber having a window transmissive to UV light; a UV light source outside of the chamber to emit UV light into the chamber; a shaft which extending between inlet and outlet ends of the chamber which turns about a central axis of the chamber; a flexible cleaning member affixed to the shaft and engaging an interior surface of the window; and at least one member extending radially from the shaft into the treatment chamber to disrupt axial flow of water through the chamber.
Abstract:
There is disclosed an optical radiation sensor system. The system includes a sensor device and a cleaning device. The sensor device detects and responds to radiation from a radiation field and includes a surface that is movable with respect to the radiation field between a first position in which the surface is in the radiation field and a second position in which at least a portion of the surface is out of the radiation field. The cleaning device operates to remove fouling materials from at least a portion of the surface in the second position. The cleaning device may be a chemical cleaning device, a mechanical cleaning device or a combined chemical/mechanical device.