Abstract:
A mounting system for an electronic device is described. This mounting system includes a base that can be rigidly mounted on or underneath a wall. Moreover, the base can be remateably coupled to the electronic device. The remateable coupling may involve pins that are inserted into corresponding holes and rotated into a lock position. Alternatively, the remateable coupling may involve magnets that mechanically couple to each other so long as the electronic device and the base are within a predefined distance. The electronic device may receive power via the remateable coupling or via inductive charging. In addition, the electronic device may monitor a spatial parameter, such as: a location of the electronic device, a velocity of the electronic device and/or an acceleration of the electronic device. If this spatial parameter changes without the electronic device first receiving a security code, the electronic device provides an alert.
Abstract:
An environmental monitoring device that includes a sensor mechanism is described. During operation of the environmental monitoring device, the sensor mechanism provides sensor data based on measurements of environmental conditions in an external environment that includes the environmental monitoring device. Moreover, a control mechanism assesses if the environmental conditions indicate at least one of a set of threats. If yes, the control mechanism provides a corresponding alert. Furthermore, the environmental monitoring device includes a power source with a primary power source and a secondary power source. The secondary power source has at least a 10-year life and may power at least a subset of the functionality of the environmental monitoring device in the event the primary power source fails. For example, the sensor mechanism may include a smoke detector that is powered by the secondary power source in the event the primary power source fails.
Abstract:
An environmental monitoring device that includes a sensor mechanism is described. During operation of the environmental monitoring device, heat generated by a processor in the environmental monitoring device may result in a convective fluid flow over the sensor mechanism that facilitates measurements of sensor data associated with an environmental condition in an external environment that includes the environmental monitoring device. Alternatively, a fluid driver (such as a fan) associated with the processor may produce the fluid flow over the sensor mechanism. Note that the fluid flow may include an airflow and/or a liquid flow. Moreover, the environmental monitoring device may include baffles that direct the fluid flow over a selected sensor in a set of sensors in the sensor mechanism.
Abstract:
Provided is a high-reliability, compact, and low-cost optical sensor device. The optical sensor device includes a glass lid substrate (2), a glass substrate (9) with a cavity having divided and exposed through-hole electrodes (5) on the periphery thereof, and an optical sensor element (3) mounted on the glass lid substrate, and has a structure in which the glass lid substrate and the glass substrate with a cavity are bonded together. By hermetically sealing with the glass substrates, high reliability is secured. By using the divided through-hole electrodes, the package size is reduced and the number of devices which can be produced in a batch in the manufacture increases, which enables cost reduction.
Abstract:
An imaging device includes: an imaging element that take an image of a subject; and a plurality of light sources that radiate a light to the subject, wherein optical axes of the plurality of the light sources are inclined outward with respect to an optical axis of the imaging element.
Abstract:
Testing the authenticity of a valuable document, whereby at least one intensity distribution of electromagnetic radiation passing through the valuable document in the dark field is detected in a spatially resolved manner and a spatially resolved dark field characteristic is determined therefrom. The actual authenticity test is then performed by a procedure in which selected test partial regions of the valuable document are assigned respectively to one of a plurality of suspicion classes, an interconnection region is formed from substantially interconnected test partial regions that were assigned to at least one specific suspicion class, and the valuable document, depending on the form and/or position of the interconnection region, is assigned to one of at least two authenticity categories which is linked to the at least one specific suspicion class.
Abstract:
A proximity sensor including a housing, a plurality of light pulse emitters for projecting light out of the housing along a detection plane, a plurality of primary light detectors for detecting reflections of the light projected by the emitters, by a reflective object in the detection plane, a plurality of primary lenses oriented relative to the emitters and primary detectors in such a manner that for each emitter-detector pair, light emitted by the emitter of that pair passes through one of the primary lenses and is reflected by the object back through one of the primary lenses to the detector of that pair when the object is located at a position, from among a primary set of positions in the detection plane, that position being associated with that emitter-detector pair, and a processor for co-activating emitter-detector pairs, and configured to calculate a location of the object in the detection plane.
Abstract:
An apparatus and a method for multispectral imaging that may, comprising a cyclopean camera arrangement comprising at least two spaced apart imaging sensors operating at a first waveband, an image combiner arranged to combine images from the at least two spaced apart imaging sensors to provide a first cyclopean image of a scene from a first virtual position, a further imaging sensor operating at a second waveband different from the first and arranged to provide a second image of the scene from a second position, and a second image combiner arranged to combine the first and second images of the scene to provide a multispectral image, wherein the first virtual position of the cyclopean camera arrangement and the second position of the further sensor are arranged to be substantially the same.
Abstract:
An apparatus and a method for multispectral imaging comprising, representation generator arranged to generate a three dimensional representation of a scene, at least one infrared imaging sensor arranged to obtain an infrared image of the scene, and an image overlaying processor arranged to overlay the infrared image onto the three dimensional representation of the scene to produce an infrared three dimensional representation of the scene.
Abstract:
The present invention relates to an apparatus for monitoring the process performance of a laser system with a high-power optical fiber cable (3), specifically an optical fiber cable made for transmitting power levels up to and exceeding 20 kW. Generally the fiber cable has an entrance end (1) for an incident beam-light and an exit end (2) where the beam-light is leaving the optical fiber, and wherein at least one of the ends is provided with a connector device (4,5) having sensor means (14) for monitoring the optical fiber cable status. According to the invention the sensor means (14) are located inside the connector device (4,5) and arranged for monitoring and controlling a laser application process during action as well as detection of conditions within the connector device, such as scattered light, temperatures or the like. The sensors (14) are connected to a fiber interlock circuit (30) to activate an interlock break when measured signals are higher than threshold levels (31) and the comparison of the signals to the threshold values is integrated inside the connector device (4, 5). Preferably the sensor means includes diodes (15,16,17) of the light sensor type located in the rear part of the connector device (14,15). A very fast interlock break system is then provided which has the signal control integrated inside the fiber connector.