Abstract:
A laser and amplifier combination delivers a sequence of optical pulses at a predetermined pulse-repetition frequency PRF. An interferometer generates a signal representative of the carrier-envelope phase (CEP) of the pulses at intervals corresponding to the PRF. The signal includes frequency components from DC to the PRF. The signal is divided into high and low frequency ranges. The high and low frequency ranges are sent to independent high frequency and low frequency control electronics, which drive respectively a high-frequency CEP controller and a low frequency controller for stabilizing the CEP of pulses in the sequence.
Abstract:
A system for measuring one or more characteristics of light of a photon energy Eph from a light source, that can be determined from measuring three-photon absorption events, the system comprising: a) a detector having a band gap material characterized by gap energy between 2.1 and 3 times Eph; b) an optical element configured to concentrate a beam of light from the light source on the detector; c) a signal amplifier that amplifies an output signal indicative of when three photons produced by the light source undergo a three-photon absorption event in the band gap material; and d) an analyzer that analyzes the output signal to count or measure a rate of the three-photon absorption events, and determines the one or more characteristics of the light from the light source.
Abstract:
A birefringent filter includes an EM directing element in optical alignment with a first surface of the birefringent plate. A polarimetric imager includes a birefringent filter including a birefringent plate formed of a birefringent material and an EM directing element in optical alignment with a first surface of the birefringent plate. The imager further includes a detector in optical alignment with a second surface of the birefringent plate. A projection system includes an EM directing element and a birefringent filter. The filter includes (1) a birefringent plate formed of a birefringent material and having a first surface in optical alignment with the emissions source, and (2) an EM directing element in optical alignment with a second surface of the birefringent plate.
Abstract:
A preferred apparatus can include a high-power laser; a beam splitter; a non-linear optical assembly configured to cube an incident beam; a detector optically configured to receive an input beam from the beam splitter and a reference beam from the non-linear optical assembly; and a controller configured to calculate a fourth order cross correlation of the input beam and the reference beam to characterize the high-power laser.
Abstract:
A balanced optical cross correlator includes an optical waveguide, a first photodiode including a first n-type semiconductor and a first p-type semiconductor positioned about the optical waveguide on a first side of the optical waveguide's point of symmetry, and a second photodiode including a second n-type semiconductor and a second p-type semiconductor positioned about the optical waveguide on a second side of the optical waveguide's point of symmetry. A balanced receiver including first and second inputs is configured to produce an output current or voltage that reflects a difference in currents or voltages, originating from the first and the second photodiodes of the balanced cross correlator and fed to the first input and to the second input of the balanced receiver.
Abstract:
An object is to enable a change in a frequency for which an electric signal based on an optical signal is measured by a spectrum analyzer. An optical measurement device includes a first photoconductive switch that receives predetermined pulse light from a first laser light source, and outputs terahertz light having the same repetition frequency as the repetition frequency of the predetermined pulse light. The optical measurement device also includes a second photoconductive switch that receives the terahertz light and a sampling light pulse, and outputs a signal corresponding to a power of the terahertz light at a time point when the sampling light pulse is received. The optical measurement device further includes an RF spectrum analyzer that measures a magnitude of the signal corresponding to a measured frequency that changes over time, an optical coupler that outputs a simultaneous light pulse when the predetermined pulse light and the sampling light pulse are simultaneously input, a photo detector that converts the simultaneous light pulse into an electric signal as a trigger signal, and an optical delay circuit that delays the trigger signal.
Abstract:
A single-shot pulse contrast measuring device based on non-harmonic long-wavelength sampling pulse includes a long-wavelength sampling light generation unit, a large-angle non-collinear sum-frequency cross-correlation unit and a high sensitivity signal receiving unit. The long-wavelength sampling light sum-frequency cross-correlator can allow that the beams are interacted with each other at the large non-collinear angle in the quasi-phase matching crystal, match the measuring window of the high sensitivity signal receiving system, and is in favor of eliminating the scattered light noise, thereby achieving the single measurement of the pulse contrast with large temporal window and high dynamic range. The single-shot pulse contrast measuring device of the present invention has good extensibility at the temporal window and dynamic range, and is adapted for measuring the contrast of the high-power laser with various wavelengths.
Abstract:
A method utilizes an optical image processing system. The method includes calculating a product of (i) a measured magnitude of a Fourier transform of a complex transmission function of an object or optical image and (ii) an estimated phase term of the Fourier transform of the complex transmission function. The method further includes calculating an inverse Fourier transform of the product, wherein the inverse Fourier transform is a spatial function. The method further includes calculating an estimated complex transmission function by applying at least one constraint to the inverse Fourier transform.
Abstract:
A method determines a transient response of a sample. The method includes providing a measured magnitude of the Fourier transform of a complex electric field temporal profile of a pulse sequence comprising a first pulse indicative of the transient response of the sample and a second pulse. The method further includes providing an estimated phase term of the Fourier transform of the complex electric field temporal profile of the pulse sequence. The method further includes multiplying the measured magnitude and the estimated phase term to generate an estimated Fourier transform of the complex electric field temporal profile of the pulse sequence. The method further includes calculating an inverse Fourier transform of the estimated Fourier transform, wherein the inverse Fourier transform is a function of time. The method further includes calculating an estimated complex electric field temporal profile of the pulse sequence by applying at least one constraint to the inverse Fourier transform.
Abstract:
Methods and systems are described for suppressing nonresonant background in broadband coherent anti-Stokes Raman scattering (CARS) microscopy and spectroscopy. The methods and systems improve sensitivity and signal to noise ratio in CARS.