FULLY INTEGRATED COMPLEMENTARY METAL OXIDE SEMICONDUCTOR (CMOS) FOURIER TRANSFORM INFRARED (FTIR) SPECTROMETER AND RAMAN SPECTROMETER
    131.
    发明申请
    FULLY INTEGRATED COMPLEMENTARY METAL OXIDE SEMICONDUCTOR (CMOS) FOURIER TRANSFORM INFRARED (FTIR) SPECTROMETER AND RAMAN SPECTROMETER 审中-公开
    完全集成的补充金属氧化物半导体(CMOS)FOURIER变换红外(FTIR)光谱仪和拉曼光谱仪

    公开(公告)号:US20130321816A1

    公开(公告)日:2013-12-05

    申请号:US13985550

    申请日:2012-02-14

    Abstract: A Fourier Transform Infrared (FTIR) Spectrometer integrated in a CMOS technology on a Silicon-on-Insulator (SOI) wafer is disclosed. The present invention is fully integrated into a compact, miniaturized, low cost, CMOS fabrication compatible chip. The present invention may be operated in various infrared regions ranging from 1.1 μm to 15 μm or it can cover the full spectrum from 1.1 μm to 15 μm all at once.The CMOS-FTIR spectrometer disclosed herein has high spectral resolution, no movable parts, no lenses, is compact, not prone to damage in harsh external conditions and can be fabricated with a standard CMOS technology, allowing the mass production of FTIR spectrometers. The fully integrated CMOS-FTIR spectrometer is suitable for battery operation; any and all functionality can be integrated on a chip with standard CMOS technology. The disclosed invention for the FTIR spectrometer may also be adapted for a CMOS-Raman spectrometer.

    Abstract translation: 公开了在绝缘体上硅(SOI)晶片上集成在CMOS技术中的傅里叶变换红外(FTIR)光谱仪。 本发明完全集成到紧凑型,小型化,低成本的CMOS制造兼容芯片中。 本发明可以在从1.1μm到15μm的各种红外区域中操作,或者它可以一次覆盖1.1μm至15μm的全光谱。 本文公开的CMOS-FTIR光谱仪具有高光谱分辨率,无可移动部件,无透镜,紧凑,在恶劣的外部条件下不容易损坏,并且可以使用标准CMOS技术制造,允许大量生产FTIR光谱仪。 完全集成的CMOS-FTIR光谱仪适用于电池操作; 任何和所有功能可以集成在具有标准CMOS技术的芯片上。 所公开的FTIR光谱仪的发明也可以适用于CMOS-拉曼光谱仪。

    Spectrometer capable of eliminating side-tail effects
    132.
    发明授权
    Spectrometer capable of eliminating side-tail effects 有权
    能够消除尾巴效应的光谱仪

    公开(公告)号:US08508731B2

    公开(公告)日:2013-08-13

    申请号:US12987624

    申请日:2011-01-10

    Applicant: Cheng-Hao Ko

    Inventor: Cheng-Hao Ko

    CPC classification number: G01J3/02 G01J3/0205 G01J3/0259 G01J3/0262 G01J3/20

    Abstract: A spectrometer capable of eliminating side-tail effects includes a body and an input section, a diffraction grating, an image sensor unit and a wave-guiding device, which are mounted in the body. The input section receives a first optical signal and outputs a second optical signal travelling along a first light path. The diffraction grating receives the second optical signal and separates the second optical signal into a plurality of spectrum components, including a specific spectrum component travelling along a second light path. The image sensor unit receives the specific spectrum component. The wave-guiding device includes first and second reflective surfaces opposite to each other and limits the first light path and the second light path between them to guide the second optical signal and the specific spectrum component. The first and second reflective surfaces are separated from a light receiving surface of the image sensor unit by a predetermined gap.

    Abstract translation: 能够消除侧尾效应的光谱仪包括安装在本体中的主体和输入部,衍射光栅,图像传感器单元和波导装置。 输入部分接收第一光信号并输出​​沿着第一光路行进的第二光信号。 衍射光栅接收第二光信号并将第二光信号分离成多个光谱分量,包括沿第二光路行进的特定光谱分量。 图像传感器单元接收特定的光谱分量。 波导装置包括彼此相对的第一和第二反射表面,并限制它们之间的第一光路和第二光路,以引导第二光信号和特定光谱分量。 第一和第二反射表面与图像传感器单元的光接收表面以预定的间隙分开。

    DISPERSIVE ELEMENT, SPECTROMETER AND METHOD TO SPECTRALLY SEPARATE WAVELENGTHS OF LIGHT INCIDENT ON A DISPERSIVE ELEMENT
    133.
    发明申请
    DISPERSIVE ELEMENT, SPECTROMETER AND METHOD TO SPECTRALLY SEPARATE WAVELENGTHS OF LIGHT INCIDENT ON A DISPERSIVE ELEMENT 有权
    散射元件,光谱仪和光谱分光光度分布波动的方法

    公开(公告)号:US20130176564A1

    公开(公告)日:2013-07-11

    申请号:US13737850

    申请日:2013-01-09

    Applicant: ams AG

    Abstract: A dispersive element is disclosed which is designed to receive incident light (1) and disperse the incident light (1) into multiple spatially separated wavelengths of light. The dispersive body (DB) comprises a collimation cavity (COLL) to collimate the incident light (1), at least two optical interfaces (PRIS) to receive and disperse the collimated light (2) and a collection cavity (CLCT) to collect the dispersed light (3) from the at least two dispersive interfaces (op1, op2) and to focus the collected light (4).

    Abstract translation: 公开了一种分散元件,其被设计为接收入射光(1)并将入射光(1)分散成多个空间上分离的光的波长。 分散体(DB)包括准直腔(COLL)以准直入射光(1),至少两个光学接口(PRIS),以接收和分散准直光(2)和收集腔(CLCT),以收集 从所述至少两个分散界面(op1,op2)分散光(3)并聚焦所收集的光(4)。

    Multispectral imaging device based on multiple quantum wells
    134.
    发明授权
    Multispectral imaging device based on multiple quantum wells 有权
    基于多量子阱的多光谱成像装置

    公开(公告)号:US08378301B2

    公开(公告)日:2013-02-19

    申请号:US12605188

    申请日:2009-10-23

    Abstract: The invention relates to a multispectral imaging device comprising a multiple-quantum-well structure operating on inter-sub-band transitions by absorbing radiation at a wavelength λ lying within a set of wavelengths to which said structure is sensitive, said structure comprising a matrix of individual detection pixels, characterized in that the matrix is organized in subsets (Eij) of four individual detection pixels, a first individual detection pixel (Pλ1) comprising a first diffraction grating (Rλ1) sensitive to a first subset of wavelengths, a second individual detection pixel (Pλ2) comprising a second diffraction grating (Rλ2) sensitive to a second subset of wavelengths, a third individual detection pixel (Pλ3) comprising a third diffraction grating (Rλ3) sensitive to a third subset of wavelengths and a fourth individual detection pixel (PΔλ) not comprising a wavelength-selective diffraction grating, the first, second and third subsets of wavelengths belonging to the set of wavelengths to which said structure is sensitive.

    Abstract translation: 本发明涉及一种多光谱成像装置,其包括通过吸收位于所述结构敏感的一组波长内的波长λ的辐射而在子带间跃迁上操作的多量子阱结构,所述结构包括: 单个检测像素,其特征在于,矩阵被组织在四个单独检测像素的子集(Eij)中,第一个体检测像素(Pλ1)包括对第一波长子集敏感的第一衍射光栅(Rλ1),第二个体检测 包括对第二波长子集敏感的第二衍射光栅(Rλ2)的像素(Pλ2),包括对第三子波长敏感的第三衍射光栅(Rλ3)的第三个别检测像素(Pλ3)和第四单独检测像素 P&Dgr;λ)不包括波长选择性衍射光栅,第一,第二和第三波长子集属于se 所述结构敏感的波长t。

    MULTI-CAVITY OPTICAL SENSING AND THERMOPILE INFRARED SENSING SYSTEM
    135.
    发明申请
    MULTI-CAVITY OPTICAL SENSING AND THERMOPILE INFRARED SENSING SYSTEM 有权
    多孔光学传感和热像红外传感系统

    公开(公告)号:US20120012966A1

    公开(公告)日:2012-01-19

    申请号:US13046890

    申请日:2011-03-14

    CPC classification number: G01J3/26 G01J3/0259 G01J5/12

    Abstract: The present invention discloses a multi-cavity optical sensing and thermopile infrared sensing system, which comprises an optical sensing part, a dielectric layer, a plurality of optical cavities, and a plurality of thermocouples. The dielectric layer covers on the top of the optical sensing part. The optical cavities are formed by a plurality of metal reflectors inside the dielectric layer. The thermocouples are laterally disposed near the bottom of the dielectric layer. In addition, a low temperature region is formed in an area which is the overlapping of vertical projections of such thermocouples and the optical sensing part; a high temperature region is formed by the overlapping of vertical projections of such thermocouples, but without the overlaying which belongs to the vertical projection of the optical sensing part. Therefore, the system can sense the ambient light brightness, color conditions and human blackbody infrared signals within the range of 8-12 micrometers wavelength.

    Abstract translation: 本发明公开了一种多腔光学感测和热电堆红外感测系统,其包括光学感测部分,电介质层,多个光学腔和多个热电偶。 电介质层覆盖在光学感测部分的顶部。 光腔由电介质层内的多个金属反射器形成。 热电偶横向设置在电介质层的底部附近。 此外,在与这种热电偶的垂直投影和光学感测部分重叠的区域中形成低温区域; 通过这种热电偶的垂直投影的重叠形成高温区域,但不包括属于光学感测部件的垂直投影的重叠。 因此,该系统可以感测环境光亮度,颜色条件和人体黑体红外信号在8-12微米波长范围内。

    Miniscule-size photo-spectrometer units
    136.
    发明授权
    Miniscule-size photo-spectrometer units 有权
    小尺寸光谱仪单位

    公开(公告)号:US08089626B2

    公开(公告)日:2012-01-03

    申请号:US12226931

    申请日:2007-05-01

    Inventor: Gavriel J. Iddan

    CPC classification number: G01J3/2803 G01J3/02 G01J3/0259 G01J3/0291 G01J3/12

    Abstract: A device and a method for implementing a photo-spectrometer unit (20), or PSU (20), for use with a spectrometry system (100) having optical means (12), and electronic means (13) is disclosed. The PSU is formed in a two-step manufacturing process to form a chip having a monolithic structure. The chip has a first surface and second surface. During the first manufacturing process step, optical means are integrally formed on the first surface (301), and during the second manufacturing process step, electronic means are formed on the second surface (302). The chip is transparent to electromagnetic radiations, and the PSU has at least one optical deflecting element (32) for guiding received radiations through the chip, for establishing direct optical path coupling between an optical element formed on the first surface and an electronic element formed on the second surface.

    Abstract translation: 公开了一种用于实现光谱仪单元(20)或PSU(20)的装置和方法,用于具有光学装置(12)和电子装置(13)的光谱测量系统(100)。 PSU以两步制造工艺形成以形成具有整体结构的芯片。 该芯片具有第一表面和第二表面。 在第一制造工艺步骤中,光学装置一体地形成在第一表面(301)上,并且在第二制造工艺步骤期间,电子装置形成在第二表面(302)上。 芯片对于电磁辐射是透明的,并且PSU具有至少一个用于引导接收的辐射通过芯片的光学偏转元件(32),用于在形成在第一表面上的光学元件和形成在第一表面上的电子元件之间建立直接光路耦合 第二个表面。

    Spectroscopy module
    137.
    发明授权
    Spectroscopy module 有权
    光谱模块

    公开(公告)号:US08045160B2

    公开(公告)日:2011-10-25

    申请号:US13086065

    申请日:2011-04-13

    Abstract: Alignment marks 12a, 12b, 12c, and 12d are formed on the flat plane 11a of the peripheral edge portion 11 formed integrally with the diffracting layer 8, and when the lens portion 7 is mounted onto the substrate 2, these alignment marks 12a, 12b, 12c and 12d are positioned to the substrate 2, thereby making exact alignment of the diffracting layer 8 with respect to the light detecting portion 4a of the light detecting element 4, for example, not by depending on a difference in curvature radius of the lens portion 7. In particular, the alignment marks 12a, 12b, 12c and 12d are formed on the flat plane 11a, thereby image recognition is given to exactly detect positions of the alignment marks 12a, 12b, 12c and 12d, thus making it possible to make exact alignment.

    Abstract translation: 对准标记12a,12b,12c和12d形成在与衍射层8一体形成的周缘部分11的平面11a上,并且当透镜部分7安装到基板2上时,这些对准标记12a,12b ,12c和12d位于基板2上,从而使衍射层8相对于光检测元件4的光检测部分4a精确对准,例如不依赖于透镜的曲率半径的差异 特别地,对准标记12a,12b,12c和12d形成在平面11a上,由此,图像识别被精确地检测对准标记12a,12b,12c和12d的位置,从而可以 准确对齐。

    Spectroscopic module
    138.
    发明授权
    Spectroscopic module 失效
    光谱模块

    公开(公告)号:US08045155B2

    公开(公告)日:2011-10-25

    申请号:US12377343

    申请日:2008-06-05

    CPC classification number: G01J3/02 G01J3/0208 G01J3/0243 G01J3/0259 G01J3/04

    Abstract: The spectroscopy module is provided with a body portion for transmitting light, a spectroscopic portion for dispersing light made incident from the front plane of the body portion into the body portion to reflect the light on the front plane, a light detecting element having a light detecting portion for detecting the light dispersed and reflected by the spectroscopic portion and electrically connected to a wiring formed on the front plane of the body portion by face-down bonding, and an underfill material filled in the body portion side of the light detecting element to transmit the light. The light detecting element is provided with a light-passing hole through which the light advancing into the spectroscopic portion passes, and a reservoir portion is formed on a rear plane of the body portion side in the light detecting element so as to enclose a light outgoing opening of the light-passing hole.

    Abstract translation: 光谱模块设置有用于透射光的主体部分,用于将从主体部分的前平面入射的光分散到主体部分中以将光反射到前平面上的光谱部分,具有光检测的光检测元件 用于检测由分光部分分散和反射的光并通过面朝下接合与形成在主体部分的前平面上的布线电连接的光;以及填充在光检测元件的主体部分侧的底部填充材料, 光。 光检测元件设置有通向分光部分的光通过的通光孔,并且在光检测元件中的主体部分侧的后平面上形成储存部分,以便包围光出射 打开通光孔。

    SPECTROSCOPY MODULE
    139.
    发明申请
    SPECTROSCOPY MODULE 有权
    光谱模块

    公开(公告)号:US20110205538A1

    公开(公告)日:2011-08-25

    申请号:US13086065

    申请日:2011-04-13

    Abstract: Alignment marks 12a, 12b, 12c, and 12d are formed on the flat plane 11a of the peripheral edge portion 11 formed integrally with the diffracting layer 8, and when the lens portion 7 is mounted onto the substrate 2, these alignment marks 12a, 12b, 12c and 12d are positioned to the substrate 2, thereby making exact alignment of the diffracting layer 8 with respect to the light detecting portion 4a of the light detecting element 4, for example, not by depending on a difference in curvature radius of the lens portion 7. In particular, the alignment marks 12a, 12b, 12c and 12d are formed on the flat plane 11a, thereby image recognition is given to exactly detect positions of the alignment marks 12a, 12b, 12c and 12d, thus making it possible to make exact alignment.

    Abstract translation: 对准标记12a,12b,12c和12d形成在与衍射层8一体形成的周缘部分11的平面11a上,并且当透镜部分7安装到基板2上时,这些对准标记12a,12b ,12c和12d位于基板2上,从而使衍射层8相对于光检测元件4的光检测部分4a精确对准,例如不依赖于透镜的曲率半径的差异 特别地,对准标记12a,12b,12c和12d形成在平面11a上,由此,图像识别被精确地检测对准标记12a,12b,12c和12d的位置,从而可以 准确对齐。

Patent Agency Ranking