Abstract:
A thermal imaging apparatus comprises a housing defining an entrance pupil for ingress of imaging radiation. At least one light sensor is positioned forward of the entrance pupil. An electronic imaging device such as a focal plane array is located in the housing rearward of the entrance pupil for converting imaging radiation to electrical signals for further processing. The apparatus further includes a shutter having an open position and a closed position. In the closed position, the shutter is located between the entrance pupil and the electronic imaging device so as to inhibit exposure of the electronic imaging device to incident radiation. Circuitry is provided for selectively operating the shutter to be in the closed position based on signals produced at the light sensor.
Abstract:
A flux diffuser for radiometrically calibrating an imaging sensor using the sun as a calibration light source, the flux diffuser including a fiberglass cloth having input and output surfaces. The input surface receives solar irradiance, and the output surface provides diffused scattered light to a radiometer. A layer of mylar may be disposed on top of the input surface. A layer of PTFE or Spectralon™ may be disposed on top of the output surface, and another layer of mylar may be disposed on top of the layer of PTFE or Spectralon™.
Abstract:
In an infrared detector package, a first annular metallized layer (6a, 6b) is formed along the annular shoulder (4a) of a casing member (4), and a second annular metallized layer (7) is formed along the annular mating surface of a window member (5). Brazing material (8) is integrally interposed between the first and second metallized layers. At least one of the first and second annular metallized layers comprises a mutually separated concentric portions (6a, 6b), and the brazing material extends across the two mutually separated concentric portions. During the manufacturing process, brazing material is deposited on one of the two mutually separated concentric portions, and is allowed to flow along the opposing metallized surface until the brazing material reaches the other of the two mutually separated concentric portions. Because the brazing material exposes a clean metallic surface as it flows so that the brazing material is properly interposed between the opposing annular metallized layer and the other of the mutually separated concentric portions of the corresponding annular metallized layer without any intervention of dross, oxidized film or other foreign matters. Thereby the brazing material ensures a favorable bonding and sealing performance.
Abstract:
The present invention enables to provide a simple and inexpensive electromagnetic wave sensor that selectively detects sub-millimeter waves and millimeter waves in a specific frequency band, an imaging element and an imaging device. The distance of the gap between a plurality of antenna elements is smaller than the wavelength of infrared light. A capacitor electrically formed by the gap between the plurality of antenna elements, and an electrical resistor portion form parallel circuits electrically coupled to the antenna portion. The plurality of antenna elements are formed so that the impedance of the antenna portion is matched with the impedance of the parallel circuits against electromagnetic waves having a predetermined frequency, and is not matched against the higher harmonics of electromagnetic waves having the predetermined frequency.
Abstract:
In a sensor arrangement for measuring the temperature of a surface with a temperature sensor provided on a circuit substrate, which is attached on a front side of a tongue-shaped projection of said circuit substrates and can be positioned in the direct proximity to said surface spaced apart from said circuit substrate, wherein a flexible heat conductive element surrounding said tongue-shaped projection in the region of said temperature sensor with a heat conductive cap or heat conductive foil is attached for the contacting of said surface.
Abstract:
Variable aperture and actuator assemblies are provided for a radiation detector housing in an imaging system. The variable aperture assembly includes a ring mounted over the housing's window, a plate having a first aperture disposed over the window, an aperture blade operatively coupled to the ring so the blade moves laterally relative to the first aperture, and an aperture drive mechanism having a body and an actuator coupling member extending at an angle from the body. The drive mechanism is adapted to drive the blade laterally away from the first aperture when the member is moved in a first lateral direction, and over the first aperture to define a second aperture disposed over the window when the member is moved in a second lateral direction. The actuator assembly has an actuator and an actuator arm adapted to engage the actuator coupling member to control the lateral movement of the member.
Abstract:
A sensor (30) for detecting electromagnetic radiation comprises a sensor element (10), a housing (31, 33) in which the sensor element is disposed, and a radiation inlet window (35) provided in the housing and closed by a material (32) transmissible for the radiation to be detected. The transmissible material (32) is fixed to the housing by fixation means (38) not disposed in the field of view of the sensor element.
Abstract:
The present invention is directed to a method and apparatus for reducing the effects of window clouding on a viewport window in a reactive environment. One or more clouded viewport windows are obtained for testing, in which the clouding results from exposure to the reactive environment. The clouding typically appears as a coating film on the test windows. The clouded viewport windows are analyzed for one or more spectral regions having good transmission. The threshold level of light transmission is determined by the particular application in which the window is used. The spectral regions of good transmission are evaluated for their usefulness with a particular algorithm that will use the spectral data in a production environment. Spectral regions that cannot be evaluated using the subject algorithm are eliminated from consideration. Spectral regions that can be evaluated using the subject algorithm and exhibit low absorption are selected for monitoring in the production environment.
Abstract:
Remote sensing in an environment having temperatures greater than 300° C., using an optical fiber having a core (10), a cladding (20), and a metallic protective coating (30) on the cladding to protect a surface of the cladding, the cladding having a diameter greater than 150 μm, and a thickness of at least 50 μm. The larger diameter cladding means stress from the metallic protective layer can be reduced, giving lower optical loss and better hydrogen protection. A metal conduit (330) encapsulates the sensing fiber, and a pump evacuates the conduit to reduce hydrogen seepage. Ceramic splice protectors are used. OTDR is used to determine differential loss at different locations along the fiber. A reflective element at the far-end of the fiber eases calibration.
Abstract:
The present invention relates to an optical sensor for the monitoring of combustion processes in a combustion chamber wherein the optical sensor at least comprises a lens system facing the combustion chamber, a waveguide and a sheath surrounding the lens system and one end of the waveguide characterized in that the lens system consists of at least one essentially plano-concave lens and a double concave lens wherein the planar surface of the plano-concave lens is exposed to the combustion chamber. The invention also relates to a method for the manufacture of said sensor.