Abstract:
To provide a semiconductor display device capable of being easily manufactured and a method for manufacturing the semiconductor display device.The semiconductor display unit 1 includes: a printed circuit board 3 with a display section 2 formed thereon; a protection member 4; a embankment member 5; X lines 6; and Y lines 7. The embankment member 5 is composed of silicon resin which is capable of repelling epoxy resin constituting the protection member 4. Even when the embankment member 5 is lower than the protection member 4 or even when potting is performed to make the liquid epoxy resin 21 higher than the embankment member 5 at a manufacturing process, the epoxy resin 21 is repelled by the embankment member 5 and dose not spill.
Abstract:
A module for a surface acoustic wave oscillator includes a substrate having a top surface, a bottom surface and peripheral side faces. Several castellations are located about the outer peripheral side faces thereof. The castellations form an electrical connection between the top and bottom surfaces of the substrate. Connection pads are mounted on the top surface and are adapted for connection to the castellations. An oscillator circuit and a surface acoustic wave device are mounted on the top surface and connected to the connection pads. A cover is mounted over the substrate and has at least one tab adapted to be fitted within a respective one of the castellations. The overall module with the cover has a dimension of approximately 5 mm in width, 7 mm in length, and 2.7 mm in height.
Abstract:
In a wiring substrate having a metal wiring pattern that is formed on a substrate and includes a contact portion for providing connection to an external element, an organic thin film containing silane is formed to cover the metal wiring pattern and the contact portion is electrically connected to the external element through the organic thing film. Unlike conventional wiring substrates in which a contact portion is uncovered by ripping open or cutting away a protective resin film formed on the contact portion, the wiring substrate can be electrically connected with an external element having a low contact pressure, for example.
Abstract:
The present invention provides a flexible electrode array, comprising a silicone containing body, at least one metal trace layer and at least one electrode pad on the surface. The present invention further provides a process of manufacturing a flexible electrode array, comprising: a) irradiating a surface area of a molded silicone containing layer yielding traces with a light beam emitted by a pulsed UV laser source, b) immersing said irradiated molded silicone layer for inducing the deposit of metal ions to form metal traces, c) applying a silicone containing layer on said silicone containing layer and said metal traces, d) irradiating the surface for drilling holes into the surface of the molded silicone containing layer, and e) immersing said irradiated molded silicone layer for inducing the deposit of metal ions to form metal electrode pads.
Abstract:
A method for manufacturing a tape wiring board in accordance with the present invention may employ an imprinting process in forming a wiring pattern thereby reducing the number of processes for manufacturing a tape wiring board and allowing the manufacturing process to proceed in a single production line. Therefore, the manufacturing time and cost may be reduced. A profile of the wiring pattern may be determined by the shape of an impression pattern of a mold. This may establish the top width of inner and outer leads and incorporate fine pad pitch. Although ILB and OLB process may use an NCP, connection reliability may be established due to the soft and elastic wiring pattern.
Abstract:
A metal base circuit substrate for an optical device, which effectively reflects the generated light and radiates heat from the substrate, comprises a metal base substrate made from aluminum or aluminum alloy that supports an electric circuit via an insulation layer, wherein the insulation layer is formed from a transparent cross-linked silicone body, and the electric circuit is formed directly on the insulation layer. And an efficient method for manufacturing the aforementioned substrate comprises the steps of: a) applying a cross-linkable silicone onto the surface of a metal base substrate made from aluminum or aluminum alloy, b) cross-link
Abstract:
An electric circuit device and related manufacturing method are disclosed as having a case incorporating therein a substrate on which electric circuit elements are mounted. A sealant is filled in the case to cover the electric circuit elements and the substrate and is composed of a lower layer gel and an upper layer gel formed in a two-layer structure. The upper layer gel has a penetration equal to or less than 90 and the lower layer gel has a penetration greater than that of the upper layer gel to allow the upper layer gel to suppress vibration of a surface of the lower gel for thereby suppressing the deformation of the lower layer gel even in the presence of a tendency causing the electric circuit elements or the substrate to vibrate, preventing a degraded function in insulation, waterproof and vibrational relaxation of the lower layer gel.
Abstract:
The present invention relates to resin compositions that are useful for preparing adhesive films, which are, in turn, useful for forming interlayer insulation layers for multi-layered printed wiring boards having an excellent mechanical strength and capable of being roughened by an oxidizing agent.
Abstract:
The present invention provides a process for embedding at least one layer of at least one metal trace in a silicone-containing polymer, comprising: a) applying a polymer layer on a substrate; b) thermally treating the polymer; c) irradiating at least one surface area of the polymer with a light beam emitted by an excimer laser; d) immersing the irradiated polymer in at least one autocatalytic bath containing ions of at least one metal, and metallizing the polymer; e) thermally treating the metallized polymer; f) applying a polymer layer covering the thermally treated metallized polymer; and g) thermally treating the metallized covered polymer. The present invention further provides a polymer layer comprising silicone containing oxide particles of SiO2, TiO2, Sb2O3, SnO2, Al2O3, ZnO, Fe2O3, Fe3O4, talc, hydroxyapatite or mixtures thereof and at least one metal trace embedded in said polymer layer. The present invention further provides a flexible electrode array comprising silicone containing oxide particles of SiO2, TiO2, Sb2O3, SnO2, Al2O3, ZnO, Fe2O3, Fe3O4, talc, hydroxyapatite or mixtures thereof and at least one metal trace embedded in said polymer layer.
Abstract translation:本发明提供了一种在含硅酮聚合物中嵌入至少一层至少一种金属痕迹的方法,包括:a)在基底上施加聚合物层; b)热处理聚合物; c)用由准分子激光器发射的光束照射所述聚合物的至少一个表面积; d)将经辐射的聚合物浸入至少一种含有至少一种金属的离子的自催化浴中,并对聚合物进行金属化; e)热处理金属化聚合物; f)涂覆覆盖热处理的金属化聚合物的聚合物层; 和g)热处理金属化被覆聚合物。 本发明还提供一种聚合物层,其包含含硅氧烷的SiO 2,TiO 2,Sb 2 O 3, N 2,N 2 O 3,N 2,N 2 O 3, Fe 3 O 3,滑石,羟基磷灰石或其混合物,以及嵌入所述聚合物层中的至少一种金属迹线。 本发明还提供了一种柔性电极阵列,其包括含硅氧烷的SiO 2,TiO 2,Sb 2 O 3, / SUB>,SnO 2,Al 2 O 3,ZnO,Fe 2 O 3,3 < Fe 3 O 3,滑石,羟基磷灰石或其混合物,以及嵌入所述聚合物层中的至少一种金属迹线。
Abstract:
A module for a surface acoustic wave oscillator includes a substrate having a top surface, a bottom surface and peripheral side faces. Several castellations are located about the outer peripheral side faces thereof. The castellations form an electrical connection between the top and bottom surfaces of the substrate. Connection pads are mounted on the top surface and are adapted for connection to the castellations. An oscillator circuit and a surface acoustic wave device are mounted on the top surface and connected to the connection pads. A cover is mounted over the substrate and has at least one tab adapted to be fitted within a respective one of the castellations. The overall module with the cover has a dimension of approximately 5 mm in width, 7 mm in length, and 2.7 mm in height.