Abstract:
The introduction of undesired intermetallic phases (IMP) is reduced in lead-free solder joints. For this purpose, solder pastes are prepared, which have a metal powder mixture that generates a melting range of at least about 5° Kelvin and preferably less than about 30° Kelvin. Suitable for this purpose are metal powder mixtures, in which the melting points of the metal powder components lie apart from each other more than about 5° Kelvin, particularly more than about 10° Kelvin, preferably more than about 15° K, and optionally less than about 30° Kelvin, particularly up to about 25° Kelvin. However, metal powder mixtures are also possible, in which the melting point spread can equal about 100° Kelvin and more, if the higher melting component dissolves in the melt below the melting point of this component, so that the melting range can be held under about 30° Kelvin. With these solder pastes undesired intermetallic phases can be held nearly arbitrarily low.
Abstract:
The present invention provides a conductive adhesive comprising conductive particles and a resin wherein 30% by weight or more of the conductive particles substantially comprise silver and tin, and a molar ratio of silver and tin in the metal components of the conductive adhesive is in the range of 77.5:22.5 to 0:100; and a circuit connected by using the conductive adhesive.
Abstract:
A conductive adhesive comprises main components of a conductive filler and a binder resin, and a content of the conductive filler is in a range from 20 wt % to 70 wt %. It is preferable that at least a part of the conductive filler has protrusions. A dendrite metal filler is especially preferred. When this adhesive is compressed, the resin component is squeezed out, while the conductive filler component remains inside. As a result, the concentration of the conductive filler component is raised inside, and this is useful in connecting the electrodes by scratching the surfaces of the electrodes. No solder is required in forming a conductive adhesive 3 on a substrate electrode 2 of a circuit substrate 1 and also for packaging an electronic element 4. Provided also are a package of an electronic element using the conductive adhesive with improved initial and long-term reliability, and a method of packaging the same.
Abstract:
The conductive material comprises a first metal material having a melting point of not more than 250° C. and a second metal material having a melting point of not less than 500° C., and is paste at a temperature not more than 250° C. Whereby the conductive material can have much higher conductivity than the resin paste. The conductive material can be used in paste, whereby the conductive material can be buried in the via-hole in the same way as the resin paste.
Abstract:
The invention is directed to a thermosetting electroconductive paste for forming electroconductive bumps at predetermined locations on at least one circuit layer that is laminated to an insulating layer. Upon lamination the electroconductive bumps penetrate the insulating layer forming an electrical connection to a second circuit layer. The paste comprises, based on total composition, 80 to 90 wt % electroconductive powders comprising at least a first and second electroconductive metal powder of which packing densities are in the range of 20% or less of the average density (sp. gr.) of metal for the first powder and 20 to 40% of the average density (sp. gr.) of metal for the second powder; and 10 to 20 wt % epoxy resin, curing agent, and solvent.
Abstract:
Conductive paste containing tin particles and silver particles is packed in a substantially cylindrical via hole formed in a thermoplastic resin film that interposes between conductor patterns and is hot-pressed from both sides. When the metal particles contained in the conductive paste are sintered to form a unified conductive compound, the volume of the conductive paste shrinks. Synchronously, the resin film around the via-hole protrudes into the via-hole. Therefore, the shape of the side wall on the cross-section of the conductive compound provides an arch shape, and a side wall adjacent to a junction part of the conductive compound, which contacts the conductor pattern, is formed with an inclination. Therefore, it is possible to prevent the stress concentration due to deformation of the board.
Abstract:
Conductive paste containing tin particles and silver particles is packed in a substantially cylindrical via hole formed in a thermoplastic resin film that interposes between conductor patterns and is hot-pressed from both sides. When the metal particles contained in the conductive paste are sintered to form a unified conductive compound, the volume of the conductive paste shrinks. Synchronously, the resin film around the via-hole protrudes into the via-hole. Therefore, the shape of the side wall on the cross-section of the conductive compound provides an arch shape, and a side wall adjacent to a junction part of the conductive compound, which contacts the conductor pattern, is formed with an inclination. Therefore, it is possible to prevent the stress concentration due to deformation of the board.
Abstract:
A heated and pressed printed wiring board is made by filling via holes formed in layers of insulating film of the wiring board with an interlayer conducting material. The insulating film is stacked with conductor patterns, and each conductor pattern closes a via hole. The interlayer conducting material forms a solid conducting material in the via holes after a heating a pressing procedure. The solid conducting material includes two types of conducting materials. The first type of conducting material includes a metal, and the second type of conductive material includes an alloy formed by the metal and conductor metal of the conductor patterns. The conductor patterns are electrically connected reliably without relying on mere mechanical contact.
Abstract:
The present invention provides a conductive adhesive and a packaging structure that can keep moisture-proof reliability even when a multipurpose base metal electrode is used. A conductive adhesive according to the present invention includes first particles having a standard electrode potential that is equal to or higher than a standard electrode potential of silver, and second particles having a standard electrode potential lower than a standard electrode potential of silver. A metal compound coating having a potential higher than that of metal particles as the first particles can be formed on a surface of an electrode having a potential lower than that of the metal particles.
Abstract:
Electrically conductive, thermoplastic and heat-activatable adhesive sheet comprising i) a thermoplastic polymer in a proportion of at least 30% by weight, ii) one or more tackifying resins in a proportion of from 5 to 50% by weight and/or iii) epoxy resins with hardeners, with or without accelerators, in a proportion of from 5 to 40% by weight, iv) metallized particles in a proportion of from 0.1 to 40% by weight, v) non-deformable or virtually non-deformable spacer particles, in a proportion of from 1 to 10% by weight, which do not melt at the bonding temperature of the adhesive sheet.