Abstract:
A transformer has two magnetic cores, at least one primary winding unit mounted in the magnetic cores, at least one secondary winding unit mounted in the magnetic cores and two rectifying circuit boards externally mounted beside the magnetic cores. An AC voltage output from the secondary winding unit is transmitted to and rectified by the rectifying circuit board. Therefore, the size of the transformer is compact, and heat energy generated by electronic elements mounted on the rectifying circuit board is effectively dissipated to maintain normal operation of the transformer. Further, since the transmission path from the secondary winding unit to the rectifying circuit board is short, energy loss is reasonably reduced when the transformer is operated under a high frequency situation or a larger current mode.
Abstract:
A transformer includes: a bobbin on which a coil is wound; a core coupled with the bobbin to provide a magnetic flux, at least a portion of the core being installed on the PCB in a penetrating manner; and a base plate electrically connected to the coil and having a lead frame connected to the PCB, wherein the base plate is installed to be reversedly disposed at an upper side of the bobbin on the PCB, a space is formed between a lower surface of the base plate and an upper surface of the PCB, and the space between the lower surface of the base plate and the upper surface of the PCB is supported by a support member in contact with the upper surface of the PCB.
Abstract:
An assembled circuit comprising a substrate, a coil, a first conductive segment, a second conductive segment, a first through-hole connector and a second through-hole connector is disclosed. The first conductive segment is electrically connected to one end of the first through-hole connector, the other end of the first through-hole connector is electrically connected to one end of the second through-hole connector via the first conductive segment, and the other end of the second through-hole connector is electrically connected to the second conductive segment.
Abstract:
In a DC-DC converter module, a first through-hole conductor provided in a substrate as a first lead for electrically connecting a terminal as a voltage output terminal of an IC and a first terminal of an inductor component to each other and a second through-hole conductor provided in the substrate as a second lead for electrically connecting a terminal as a switching terminal of the IC and a second terminal of the inductor component to each other oppose each other in a direction intersecting a direction in which the first and second terminals oppose each other in the inductor component (i.e., the longitudinal direction of the substrate and inductor component).
Abstract:
A transformer capable of maintaining its height is provided. The transformer is formed on a circuit board having a receiving hole. The transformer comprises a winding module, two magnetic core modules contacting and holding the winding module, a plurality of pins and at least one supporting means. The winding module comprises a winding baseboard and a winding pillar where a winding structure is formed thereon. The winding pillar is received in the receiving hole. Each of the pins comprises a first bent part separating the corresponding pin into a first portion connected to the winding baseboard and a second portion connected to the circuit board around the receiving hole. The supporting means is formed between the first portion of at least one of the pins and the circuit board to contact the first portion and the circuit board to maintain the distance between them.
Abstract:
A surge protection circuit may include a tuned circuit board with traces designed to provide a surge protected and RF isolated DC path while propagating RF signals through the PCB dielectric with microstrip lines. The surge protection circuit utilizes high impedance RF decoupling devices such as quarterwave traces or inductors which isolate the multistage DC protection scheme which may include a gas discharge tube, serial surge impeding devices such as inductors and/or resistors, a decoupled air/spark gap device and a Zener diode junction.
Abstract:
A coil unit includes a planar coil, a printed circuit board that includes a planar coil placement section that receives the planar coil, a protective sheet that is provided on a transmission side of the planar coil and protects the planar coil, and a magnetic sheet that is provided on a non-transmission side of the planar coil. The planar coil is placed in the planar coil placement section and is electrically connected to the printed circuit board. The planar coil placement section has a shape that corresponds to an external shape of the planar coil.
Abstract:
A motor for holding a disk with a mounting opening in place includes a rotor unit including a rotor magnet rotatable about a central axis and a stator unit including a stator arranged opposite to the rotor magnet and a circuit board electrically connected to the stator. Wiring lines of the circuit board include output-side land portions electrically connected to first ends of coils of the stator, a connection-side land portion electrically connected to second ends of the coils forming a neutral point, a connection portion electrically connected to an external power source, output-side wiring portions arranged to electrically interconnect the output-side land portions and the connection portion, and a connection-side wiring portion arranged to electrically interconnect the connection-side land portion and the connection portion. Each of the output-side wiring portions has a width greater than a width of the connection-side wiring portion.
Abstract:
A method of manufacturing a ceramic electronic component prevents variations in characteristics even when the ceramic electronic component is embedded in a wiring board. Ceramic green sheets containing an organic binder having a degree of polymerization in a range from about 1000 to about 1500 are prepared. A first conductive paste layer is formed on a surface of each of the ceramic green sheets. The ceramic green sheets are laminated to form a raw ceramic laminated body. A second conductive paste layer is formed on a surface of the raw ceramic laminated body. The raw ceramic laminated body formed with the second conductive paste layer is fired.
Abstract:
A low profile coil-wound bobbin is disclosed. A low profile coil-wound bobbin includes a spool and a terminal. The spool is configured to have a coil-wire arrangement wound around the spool. The terminals are to be coupled to the coil-wire arrangement and a first side of a circuit board. The terminal is configured to mechanically and/or electrically couple the low profile coil-wound bobbin to the first side of the circuit board such that the low profile bobbin extends through the circuit board to another side of the circuit board.