Abstract:
A system and process for atomizing liquids at an interface between the liquid and an ambient gas or air is provided. The system includes the steps of providing a gas stream in close proximity to the liquid, having a gas orifice shaped so that the liquid is induced to extend past the slower moving gas at the outer edge of the gas stream to a faster, more central portion of the gas stream, being broken up into aerosol particles, and atomizing the liquid into a gaseous medium as a fine, highly consistent and uniform dispersion. This system and method can significantly improve the aerosol and increase the range of liquid flow rates over which the nebulizer operate.
Abstract:
Fluid and air nozzle assemblies are capable of propelling streams of a cleaning fluid and air mixture onto a vehicle vision device, visible indicator, or sensor. These nozzle assemblies are mounted on a vehicle adjacent to the vehicle vision device, visible indicator, or sensor and positioned such that liquid and air jets from the nozzles intersect prior to impinging upon the vehicle vision device, visible indicator, or sensor to form a spray mixture that cleans the vehicle vision device, visible indicator, or sensor. These nozzle assemblies have an adjustment feature for the purpose of aiming the fluid-air spray toward the vehicle vision device, visible indicator, or sensor. The nozzle assemblies are associated with a control valve capable of connection in a pressurized air system on the vehicle and in the pressurized washer system for the windshield wipers and also capable of automatically directing liquid from the vehicle washer system and pressurized air on the vehicle to the liquid and air nozzles perform cleaning of a vehicle vision device, visible indicator, or sensor upon manual activation of the pressurized windshield washer system of the vehicle, upon activation of brakes, or upon timed intervals.
Abstract:
A continuous gas fluidized bed process for the polymerization of olefins, especially ethylene, propylene, or mixtures thereof with other alpha-olefins by cooling the recycle gas stream to condense some liquid (e.g., a comonomer), separating at least part of the liquid and spraying it under pressure through a nozzle (1) directly into the fluidized bed by pressurizing the liquid and feeding it to a spray nozzle (1) having a mechanical device (6) for atomizing the liquid, under conditions such that the spray is formed within a spray-forming zone (5) of the nozzle outlet. The spray-forming zone (5) is preferably shielded from the fluidized bed particles by a wall or walls which can be, for example, a tube or a plate. Also described is a nozzle having two or more series of outlets, each series being fed and controlled independently to enable improved turn-up/turn-down of the liquid supply to the bed.
Abstract:
The invention relates to continuous gas fluidised bed polymerisation of olefins, especially ethylene, propylene, or mixtures of these with other alpha olefins, wherein the monomer-containing recycle gas employed to fluidise the bed is cooled to condense out at least some liquid hydrocarbon. The condensed liquid, which can be a monomer or an inert liquid, is separated from the recycle gas and is fed directly to the bed to produce cooling by latent heat of evaporation. The liquid feeding to the bed can be through gas-induced atomiser nozzles (FIG. 2), or through liquid-only nozzles. The process provides substantially improved productivity of gas fluidised bed polymerisation of olefins.
Abstract:
The device for applying one or several fluids, particularly a multi-component fluid, such as medical tissue or dental adhesives, comprises a head piece (9) having channels (25 to 28) for each fluid extending from an inlet side of the head piece (9) to a connection site of the head piece (9). The tubular body (10) comprises an inlet end facing the connection site of the head piece (9) and an outlet end facing away from the inlet end. The tubular body (10) comprises an outer wall, which, at least sectionally, is configured such that the tubular body (10) is plastically deformable, particularly plastically bendable.
Abstract:
An improved sprayer assembly for delivery of physiologic glue, including fibrin glue, is disclosed. The sprayer assembly is comprised of at least one female receptacle rigidly affixed to a base member and a sprayer member having at least one atomizing ejection port on an external surface opposing the base member. Within the sprayer member, a system of fluid channels permits each reservoir to be emptied into a well from angular connecting channels, which causes enhanced turbulence within each well. A vortex is created which propagates through an exit port and down an exit channel, causing each solution to exit the sprayer member at each ejection port in a swirling pattern. The spray patterns emitted from each syringe or reservoir overlap, causing droplets of solution to contact one another and commence a clotting reaction at a wound surface.The sprayer assembly is joined to a conventional syringe, a catheter or other solution reservoir. Thus, quickly reacting substances are stored apart from one another and only come into contact while airborne. The positioning of the ejection ports is selected to prevent droplets exiting one port from contaminating the contents within the neighboring port and channel. Thus, propagation of the reaction within the device, and subsequent plugging of the assembly is avoided.
Abstract:
Novel cluster nozzle designs useful for the formation of atomized sprays of fine liquid droplets in a continuous gas phase are described. A plurality of individual gas-liquid mixing zones communicate with a common source of liquid and a common source of gas to form gas-liquid mixtures for spraying from individual orifices in the nozzle. An improved uniformity of spray pattern is attained, as well as the ability to effect a greater liquid output from the nozzle through the use of larger size or numbers of orifices, while retaining very uniform sprays, by effecting a degree of premixing of liquid and gas before passage to the individual gas-liquid mixing zones.
Abstract:
An internal mixing chamber wherein a small amount of secondary fluid is introduced through a circumferential orifice having circumferential rotation and a large amount of primary fluid is introduced as an axial annulus to flow axially through the radially introduced secondary fluid to be mixed therein. The secondary fluid is introduced at lower pressure than the primary fluid and the system is self-balancing.
Abstract:
The present invention relates to a replaceable insert adapted to fit within the atomization port of a spray nozzle used to atomize a gas/slurry mixture. The nozzle insert has a configuration which greatly minimizes the build-up of solids on the end of the insert, the forward face of the nozzle as well as around the atomization ports when atomizing a slurry. The improved features of the nozzle insert include (a) the interior fluid conveying passage has a constant diameter through the head of the insert; (b) the downstream end of the head is tapered and ends in a circular knife edge at the spray outlet; and (c) the tapered head extends outwardly from the forward face of the nozzle a distance sufficient for the spray outlet to be positioned beyond eddy currents which form during atomization of the gas/slurry mixture.
Abstract:
Apparatus and methods for electrostatically coating a workpiece in which a spray of atomized coating material particles is charged electrically and thereafter confined within a surrounding shroud of moving air to control dispersal of the charged particles and to increase the charge potential carried by the particles. The shroud of air issues from the spray apparatus as a multiplicity of separate airstreams that extend toward the workpiece to be coated a distance sufficient to confine the charge particles against electrostatic attraction to objects other than the workpiece. Electrostatic charges are imparted to the coating material particles by a rearwardly directed corona discharge established between a corona electrode positioned in the spray path and the spray head. An air-operated switch energizes the corona electrode upon the flow of air to the spray head, thus preventing sparking between the corona electrode and the spray head by ensuring that the corona electrode is immersed in an airflow prior to being energized.