Abstract:
The present invention provides a method of wet etching a silicon slice including a silicon substrate and a metal film layer thereon comprising steps of: performing lithographic process to the silicon slice forming a masked silicon slice comprising the silicon substrate and a partially masked metal film thereon; immersing the masked silicon slice into an etchant; rotating the masked silicon slice in the etchant; injecting high-purity nitrogen gas into the etchant for agitating the etchant; removing the masked silicon slice out of the etchant, upon completion of etching; and rinsing the masked silicon slice with deionized water.
Abstract:
A method of making a microstructure with thin wall portions (T1-T3) includes a step of performing a first etching process to a material substrate having a laminate structure including a first conductive layer (11) and a second conductive layer (12) having a thickness of the thin wall portions (T1-T3), where the etching is performed from the side of the first conductive layer (11) thereby forming in the second conductive layer (12) pre thin wall portions (T1′-T3′) which has a pair of side surfaces apart from each other in an in-plane direction of the second conductive layer (12) and contact the first conductive layer (11). The method also includes a step of performing a second etching process from the side of the first conductive layer (11) for removing part of the first conductive layer (11) contacting the pre thin wall portions (T1′-T3′) to form the thin wall portions.
Abstract:
A MEMS device, including: a substrate having a first principal plane and a second principal plane opposite to the first principal plane; a through hole formed in the substrate; and a vibrating film formed over the first principal plane so as to cover the through hole. The first principal plane and the second principal plane are both a (110) crystal face; and the through hole has a substantially rhombic shape on the second principal plane.
Abstract:
A method for laser patterning of a glass body, the method comprising the steps of: (i) providing a laser, said laser having an output beam at a laser wavelength λ; (ii) providing a glass body having optical density at of at least 1.5/cm at said wavelength; (iii) directing said laser output beam to (a) impinge on the glass body without ablating said glass, and (b) heat the glass body at a location proximate to said laser output beam so as to form a swell at this location; and (iv) etching this location.
Abstract:
A method of wet etching produces high-precision microneedle arrays for use in medical applications. The method achieves precise process control over microneedle fabrication, at single wafer or batch-level, using wet etching of silicon with potassium hydroxide (KOH) solution by accurately identifying the etch time endpoint. Hence, microneedles of an exactly required height, shape, sharpness and surface quality are achieved. The outcome is a reliable, reproducible, robust and relatively inexpensive microneedle fabrication process. Microneedles formed by KOH wet etching have extremely smooth surfaces and exhibit superior mechanical and structural robustness to their dry etched counterparts. These properties afford extra reliability to such silicon microneedles, making them ideal for medical applications. The needles can also be hollowed. Wet etched silicon microneedles can then be employed as masters to replicate the improved surface and structural properties in other materials (such as polymers) by moulding.
Abstract:
A method of fabricating a micro-vertical structure is provided. The method includes bonding a second crystalline silicon (Si) substrate onto a first crystalline Si substrate by interposing an insulating layer pattern and a cavity, etching the second crystalline Si substrate using a deep reactive ion etch (DRIE) process along a [111] crystal plane vertical to the second crystalline Si substrate, and etching an etched vertical surface of the second crystalline Si substrate using a crystalline wet etching process to improve the surface roughness and flatness of the etched vertical surface. As a result, no morphological defects occur on the etched vertical surface. Also, footings do not occur at an etch end-point due to the insulating layer pattern. In addition, the micro-vertical structure does not float in the air but is fixed to the first crystalline Si substrate, thereby facilitating subsequent processes.
Abstract:
A method is provided of fabricating a reflective mirror having a reflective surface on which light is incident. This method includes: coating at least one of opposite faces of a plate-shaped etchable material made of a single crystal material, with a film-like etching mask; forming a mask pattern on at least one of opposite faces of the etching mask, the mask pattern having a planar shape to which a circle is more similar than a quadrangle; and wet-etching the etchable material. This method allows the reflective mirror to be fabricated so as to have a silhouette of a planar shape to which a circle is more similar than a quadrangle, when viewed in a direction normal to the reflective surface.
Abstract:
A method for producing narrow trenches in semiconductor devices. The narrow trenches are formed by chemically changing the properties of a first dielectric layer locally, such that the side walls of a patterned hole in the first dielectric layer is converted locally and becomes etchable by a first etching substance. Subsequently a second dielectric material is deposited in the patterned structure and the damaged part of the first dielectric material is removed such that small trenches are obtained.
Abstract:
In a formation method for forming a fine structure in a workpiece (30) containing an etching control component, using an isotropic etching process, a mask (32, 34) having an opening (36) is applied to the workpiece, and the workpiece is etched with an etching solution (38) to thereby form a recess (40), corresponding to a shape of the opening, in a surface of the workpiece. The etching of the workpiece is stopped due to the etching control component eluted out of the workpiece in the etching solution within the recess during the isotropic etching process.
Abstract:
In a formation method for forming a fine structure in a workpiece (30) containing an etching control component, using an isotropic etching process, a mask (32, 34) having an opening (36) is applied to the workpiece, and the workpiece is etched with an etching solution (38) to thereby form a recess (40), corresponding to a shape of the opening, in a surface of the workpiece. The etching of the workpiece is stopped due to the etching control component eluted out of the workpiece in the etching solution within the recess during the isotropic etching process.