Multi-sensor
    141.
    外观设计

    公开(公告)号:USD816518S1

    公开(公告)日:2018-05-01

    申请号:US29560076

    申请日:2016-04-01

    Applicant: View, Inc.

    Abstract: Various implementations relate generally to a multi-sensor device. Some implementations more particularly relate to a multi-sensor device including a ring of radially-oriented photosensors. Some implementations more particularly relate to a multi-sensor device that is orientation-independent with respect to a central axis of the ring. Some implementations of the multi-sensor devices described herein also include one or more additional sensors. For example, some implementations include an axially-directed photosensor. Some implementations also can include one or more temperature sensors configured to sense an exterior temperature, for example, an ambient temperature of an outdoors environment around the multi-sensor. Additionally or alternatively, some implementations can include a temperature sensor configured to sense an interior temperature within the multi-sensor device. Particular implementations provide, characterize, or enable a compact form factor. Particular implementations provide, characterize, or enable a multi-sensor device requiring little or no wiring, and in some such instances, little or no invasion, perforation or reconstruction of a building or other structure on which the multi-sensor device is mounted.

    NON-POWER-DRIVEN PHOTOMETER INCLUDING MULTIPLE PHOTORECEIVERS

    公开(公告)号:US20170363463A1

    公开(公告)日:2017-12-21

    申请号:US15529216

    申请日:2015-11-23

    Applicant: Kyu Young Choi

    Abstract: A non-power-driven photometer is provided, the photometer comprising: a body; and multiple narrow angle photoreceivers (narrow angle probes) formed in the body, wherein the multiple narrow angle probes receive light in the atmosphere, which is incident over a range of different azimuth angles, and allow the characteristics of the atmosphere to be analyzed with reference to the relationship between the received light and the azimuth angle of the narrow angle probe corresponding to the received light. According to the present invention, since the photometer is driven without being supplied with power, light intensity measurement can be performed in a short time. Further, since light intensity measurement can be performed with no movement or only a short-distance movement of a vehicle or airplane equipped with the photometer, the problem of errors caused by differences in the time and location of measurement can be prevented.

    BRIGHTNESS CALIBRATION METHOD AND OPTICAL DETECTION SYSTEM
    150.
    发明申请
    BRIGHTNESS CALIBRATION METHOD AND OPTICAL DETECTION SYSTEM 有权
    亮度校准方法和光学检测系统

    公开(公告)号:US20160377477A1

    公开(公告)日:2016-12-29

    申请号:US14859354

    申请日:2015-09-21

    Abstract: A brightness calibration method used in an optical detection system includes a single source illuminator and a probe card. The single source illuminator is configured to illuminate the probe card. The probe card has a plurality of detection sites. The brightness calibration method includes: sequentially detecting brightness values at the detection sites through one of a plurality of diffusers by a sensing chip; sequentially detecting transparencies of the diffusers at one of the detection sites by the sensing chip; and selecting and respectively disposing the diffusers corresponding to larger ones of the transparencies over the detection sites corresponding to smaller ones of the brightness values, and selecting and respectively disposing the diffusers corresponding to smaller ones of the transparencies over the detection sites corresponding to larger ones of the brightness values.

    Abstract translation: 在光学检测系统中使用的亮度校准方法包括单个源照明器和探针卡。 单个源照明器配置为照亮探针卡。 探针卡具有多个检测位置。 亮度校准方法包括:通过感测芯片通过多个扩散器中的一个依次检测检测点处的亮度值; 通过感测芯片依次检测在一个检测位置处的扩散器的透明度; 并且在对应于较小的亮度值的检测点上选择并分别布置与较大的透明胶片相对应的扩散器,并且在对应于较大的亮度值的检测点上选择并分别对应于较小的透明胶片的扩散器 亮度值。

Patent Agency Ranking