Abstract:
An infrared sensing strip includes a substantially linear substrate board, a receiver diode, and a plurality of light emitting diodes (LEDs) linearly aligned along the linear substrate board. Each of the LEDs is operative to transmit in a different direction. The infrared sensing strip utilizes prismatic films arranged to refract light from each of the LEDs in different directions. In one embodiment, the receiver diode is positioned centrally on the linear substrate board, and includes at least four LEDs, with two of each being disposed on either side of the receiver diode. Four prismatic films each cover a respective one of the LEDs and are arranged to refract light from each respective LED in one of four different directions. The small scale of the infrared sensing strip enables various applications including a scroll control, volume control, a heart rate monitor and various transmit and receive features.
Abstract:
An adjustable spectrum LED solar simulator method and system which provides power to LEDs, senses the LED output, compares the LED output to a predetermined norm, and adjusts the LED outputs accordingly. An adjustable spectrum LED solar simulator system includes a multiplicity of LEDs of a number of different color wavelength ranges, an LED driver system for providing power to the LEDs, a sensor system for sensing the output of the LEDs and a controller responsive to the sensor system for comparing the color spectrum of the output of the LEDs to a desired solar spectrum and enables the driver system to adjust the power to the LEDs to more closely match the desired solar spectrum. The solar simulator system may include a modulator structure of hierarchical assemblies. Solar simulator calibration is also disclosed.
Abstract:
To provide an optical sensor that can ensure accuracy of positions of a light projecting unit and a light receiving unit in a case. The optical sensor includes a case, an integrated light projecting module that includes a light emitting unit and a light projecting lens, a light receiving unit configured to receive reflected light of light projected from the light projecting module, and a light receiving lens unit configured to form an image of the reflected light on the light receiving unit. The light projecting module, the light receiving unit, and the light receiving lens unit are each independently and directly fixed to the case.
Abstract:
An image capturing apparatus comprising: a light source, for transmitting incident light to an objective without utilizing any medium besides air, such that the light emits from the objective to generate passing-through light; and a sensor, for capturing an image of the objective according to the passing-through light.
Abstract:
A solar simulator includes a light source, an optical reflection element positioned behind the light source to reflect light emitted from the light source in a form of pseudo parallel light, a low-angle light-diffusion optical element for diffusing the reflected light from the optical reflection element at a low diffusion angle, and a parallel light conversion optical element including a number of air holes arranged in parallel rows and provided with faculties for transmitting incident light parallel to the axis of the air holes to absorb or attenuate nonparallel incident light. The parallel light conversion optical element converts the incident light from the low-angle light-diffusion optical element to parallel light and emits the converted parallel light.
Abstract:
An apparatus, system and method for the radiometric calibration of an optical payload consisting of a housing with an optical aperture, at one portion. The optical aperture is utilized for passing light to an imaging device. The housing also includes at least one door located at another portion of the housing. The door receives and directs light into the housing and toward the optical aperture. The door includes a plurality of holes which are disposed directly in the door. When the housing is moved through predetermined angles relative to the sun, the plurality of holes are capable of passing light into the housing at calibrated levels of radiance.
Abstract:
The invention relates to a device for forming an interference grating on a sample, the device comprising a laser emitting a light beam of wavelength λ, a beam splitter plate splitting the beam emitted by the laser into first and second beams (11, 14), the first beam (11) being deflected in a first direction, a first stationary deflection mirror for deflecting the first beam onto a point P of the sample at a first constant angle of incidence θ1, and at least one second stationary deflection mirror for deflecting the second beam along a final path (17) that reaches said point P of the sample at a second angle of incidence θ2 in order to form an interference grating on the sample at a pitch that depends on the angular difference θ between the first and second angles of incidence θ1 and θ2, the path of the second beam being characterized in that it includes a movable deflection mirror (7, 7′) to direct and deflect the second beam from a plurality of first points of impact (71) from which the second beam (15) is directed towards a plurality of second points of impact (82) on a said second mirror (8, M2), thereby forming a plurality of pairs, each comprising first and second points of impact (71, 82), each of which corresponding to a said final path (17) of the second beam having a different value of the angle θ2, so as to cause the value of the angle of incidence θ2 to vary and thus vary the angular difference θ, and in that the first points of impact (71) are arranged on a linear or parabolic path extending from an upstream end remote from the sample where it is spaced apart from the direction of the beam (10) that is emitted by the laser in a direction opposite to the first direction and thus away from the segment (12) of the first beam that impacts said point P of the sample (ECH), said linear or parabolic path being reentrant towards said segment (12) of the first beam on going towards a downstream end closer to the sample (ECH) so as to compensate at least in part for optical path length variations of the second beam for the pairs of first and second points of impact (71, 82), each of which corresponds to a respective value of the angular difference θ.
Abstract:
An ambit light sensor with a function of IR sensing and a method of fabricating the same are provided. The ambit light sensor includes a substrate, an ambit light sensing structure, an infrared ray (IR) sensing structure, and a dielectric layer. The ambit light sensing structure is located over the substrate for sensing and filtering visible light. The IR sensing structure is located in the substrate under the ambit light sensing structure for sensing IR. The dielectric layer is located between the ambit light sensing structure and the IR sensing structure.
Abstract:
A solar cell simulator that is cylindrically symmetrical to test photovoltaic devices that are flexible. A particular embodiment would be made from plexiglass or similar acrylic material. The present invention produces a spectrum that simulates the spectral distribution of solar light that we observe on the Earth's surface. The simulator would be comprised of a tubular pulsed light source, a pulsed power supply, a tubular light spectrum filter, an IV electrical measurement station, a cylinder-shaped module holder to place the flexible large-area module during the measurement. All cylinders share the same central axis. This maintains radial uniformity of all light intensity and can be used for electrical measurements (IV curves under illumination) of flexible large-area PV modules.
Abstract:
A light fixture, using one or more solid state light emitting elements utilizes a diffusely reflect chamber to provide a virtual source of uniform output light, at an aperture or at a downstream optical processing element of the system. Systems disclosed herein also include a detector, which detects electromagnetic energy from the area intended to be illuminated by the system, of a wavelength absent from a spectrum of the combined light system output. A system controller is responsive to the signal from the detector. The controller typically may control one or more aspects of operation of the solid state light emitter(s), such as system ON-OFF state or system output intensity or color. Examples are also discussed that use the detection signal for other purposes, e.g. to capture data that may be carried on electromagnetic energy of the wavelength sensed by the detector.