Abstract:
A lens arrangement is presented. The lens arrangement comprises a first element having a concave reflective surface and defining an optical axis of the lens arrangement, and a second substantially flat and at least partially reflective element spaced-apart from the first element along the optical axis. The second element is configured to allow light passage therethrough and is oriented with respect to the optical axis and the first element such that at a predetermined angle of incidence of an input light beam onto the second element, the input light beam is reflected onto the reflective surface of the first element and reflected therefrom to pass through the second element.
Abstract:
A lens arrangement is presented. The lens arrangement comprises a first element having a concave reflective surface and defining an optical axis of the lens arrangement, and a second substantially flat and at least partially reflective element spaced-apart from the first element along the optical axis. The second element is configured to allow light passage therethrough and is oriented with respect to the optical axis and the first element such that at a predetermined angle of incidence of an input light beam onto the second element, the input light beam is reflected onto the reflective surface of the first element and reflected therefrom to pass through the second element.
Abstract:
A small-spot imaging, spectrometry instrument for measuring properties of a sample has a polarization-scrambling element, such as a birefringent plate depolarizer, incorporated between the polarization-introducing components of the system, such as the beamsplitter, and the microscope objective of the system. The plate depolarizer varies polarization with wavelength, and may be a Lyot depolarizer with two plates, or a depolarizer with more than two plates (such as a three-plate depolarizer). Sinusoidal perturbation in the resulting measured spectrum can be removed by data processing techniques or, if the depolarizer is thick or highly birefringent, the perturbation may be narrower than the wavelength resolution of the instrument.
Abstract:
A method and a matching system for providing high resolution spectroscopy measurements. Input light beam is spread, forming two dimensional array of beams. These beams are further intercepted by two dimensional detecting means. A corresponding electronic system interprets the power collected by each detecting element subsequently producing spectral data.
Abstract:
A method of analyzing a remotely-located object includes the steps of inducing a volume of an ionized ambient gas to emit pulsed terahertz radiation directed toward a targeted object by focusing an optical pump beam in the volume and ionizing another volume of the ambient gas to produce a sensor plasma by focusing an optical probe beam in the other volume of ambient gas. The interaction, in the sensor plasma, of the focused optical probe beam and an incident terahertz wave, which is produced by the targeted object reflecting, scattering, or transmitting the pulsed terahertz radiation, produces a resultant radiation. Detecting an optical component of the resultant radiation emitted by the sensor plasma facilitates detection of a signature of the targeted object imposed onto the incident terahertz radiation.
Abstract:
Spectral imaging apparatus and methods are disclosed. In one embodiment, a spectral imaging apparatus includes a spectral imaging apparatus includes a diffraction grating having one or more entrance apertures formed therein, a collecting reflecting element for reflecting said incident radiation to a diffractive surface of said diffraction grating, and a reimaging system adapted to provide a spectral image at a focal surface. The collecting reflecting element may include an aspherically-shaped portion, and the entrance apertures may be distributed along a straight or a non-straight axis. Alternately, optical fibers may be disposed in the entrance apertures. The spectral image provides a spectrum of radiation such that a first portion of the spectrum of radiation from a first region can be distinguished from a second portion of the spectrum of radiation from a second region.
Abstract:
A small-spot imaging, spectrometry instrument for measuring properties of a sample has a polarization-scrambling element, such as a birefringent plate depolarizer, incorporated between the polarization-introducing components of the system, such as the beamsplitter, and the microscope objective of the system. The plate depolarizer varies polarization with wavelength, and may be a Lyot depolarizer with two plates, or a depolarizer with more than two plates (such as a three-plate depolarizer). Sinusoidal perturbation in the resulting measured spectrum can be removed by data processing techniques or, if the depolarizer is thick or highly birefringent, the perturbation may be narrower than the wavelength resolution of the instrument.
Abstract:
Optical systems that provide for simultaneous images and spectra from an object, such as a tissue sample, an industrial object such as a computer chip, or any other object that can be viewed with an optical system such as a microscope, endoscope, telescope or camera. In some embodiments, the systems provide multiple images corresponding to various desired wavelength ranges within an original image of the object, as well as, if desired, directional pointer(s) that can provide both an identification of the precise location from which a spectrum is being obtained, as well as enhancing the ability to point the device.
Abstract:
Optical systems that provide for simultaneous images and spectra from an object, such as a tissue sample, an industrial object such as a computer chip, or any other object that can be viewed with an optical system such as a microscope, endoscope, telescope or camera. In some embodiments, the systems provide multiple images corresponding to various desired wavelength ranges within an original image of the object, as well as, if desired, directional pointer(s) that can provide both an identification of the precise location from which a spectrum is being obtained, as well as enhancing the ability to point the device.
Abstract:
The hyperspectral imager includes a diffraction grating, a collecting reflecting element and a reimaging system. The diffraction grating has an entrance slit formed at an entrance slit location therein. The entrance slit has a long dimension oriented in a y-direction. The entrance slit transmits the radiation from a slice of an incoming scene image. The collecting reflecting element receives the transmitted radiation of the incoming scene image and reflects the transmitted radiation to a diffractive surface of the diffraction grating. Grooves on the diffractive surface are substantially parallel to the y-direction. The reimaging system receives radiation diffracted by the diffractive surface. The reimaging system produces a spectral image of the entrance slit at a focal surface. The spectral image provides a spectrum of radiation propagating through the entrance slit into the hyperspectral imager such that the spectrum of radiation from a first region in the y-direction can be distinguished from the spectra of radiation from other regions in the y-direction.