Abstract:
Disclosed herein is a heat-radiating substrate. The heat-radiating substrate includes: a metal core layer; a first insulating layer that is formed on one side or both sides of the metal core layer, includes a bather layer contacting with the metal core layer, first and second pores having different diameters, and a porous layer connected with the bather layer; a first circuit layer that is embedded in the first insulating layer, filled in the second pores of the porous layer, and connected to the sides of the second pores; and a second insulating layer that is formed on the porous layer of the first insulating layer. Further, in the heat-radiating substrate of the present embodiment, the first circuit layer is partially filled in the second pores and the second insulating layer is filled in the second pores to make a plane the first insulating layer. In addition, disclosed is a method of manufacturing the heat-radiating substrate.
Abstract:
A high-reliability ceramic composite multilayer substrate that has excellent flatness and few remaining pores, can be produced at a low cost while simplifying the manufacturing process, and can eliminate layer separation or separation from a mother board. The ceramic composite multilayer substrate includes a laminate containing a first ceramic layer and a second ceramic layer that is disposed so as to contact the first ceramic layer and suppresses firing shrinkage in the plane direction of the first ceramic layer. The laminate includes a resin/ceramic composite layer in which porous ceramic is impregnated with a resin formed on at least one principal surface of the laminate.
Abstract:
The invention relates to a method for connecting two joining surfaces, particularly in the field of semiconductors, wherein at least one joining surface is produced by depositing a layer comprising 20 to 40% gold and 80 to 60% silver onto a substrate and selectively removing the silver from the deposited layer in order to produce a nanoporous gold layer as a joining surface. The joining surface with the nanoporous gold layer and an additional joining surface are disposed one above the other and pressed together.
Abstract:
A method for producing a pattern on a substrate includes discharging a droplet on a top surface of a breathable substrate being heated, the droplet being formed with a functional fluid containing a functional material, so as to produce the pattern on the top surface of the breathable substrate.
Abstract:
A plurality of conductor traces are formed on a porous base insulating layer made of porous ePTFE. Each conductor trace has a laminated structure of a seed layer and a conductor layer. A cover insulating layer is formed on the base insulating layer to cover each conductor trace. The ePTFE used as the porous base insulating layer has continuous pores. An average pore size of the ePTFE is not less than 0.05 μm and not more than 1.0 μm.
Abstract:
A printed circuit board includes a base insulating layer formed of a porous film. Conductor traces are formed on the base insulating layer formed of the porous film. A cover insulating layer is formed on the base insulating layer to cover the conductor traces. The porous film used as the base insulating layer has a reflectivity of not less than 50% for light of at least a part of wavelengths in a wavelength region from 400 nm to 800 nm.
Abstract:
A printed wiring board includes an insulating resinous substrate having an aperture unit, a first terminal unit and a second terminal unit consisting of a conductor and formed on top of the resinous substrate, and a fuse unit that electrically couples the first terminal unit and the second terminal unit to each other. At least a part of the fuse unit is disposed over the aperture unit, and in addition, is covered by a porous inorganic covering material having insulating properties.
Abstract:
An electronic component built-in module includes an electronic component, a substrate on which the electronic component is mounted, a first resin covering the electronic component and the substrate, and a second resin covering the surface of the first resin. The first resin is formed of a resin including pores. The first resin is formed so that the thickness of the first resin on an area where the electronic component is not mounted is larger than that on an area where the electronic component is mounted on the surface of the substrate. A porosity of the second resin is smaller than that of the first resin.
Abstract:
The present invention relates to materials comprising organic-inorganic polymeric networks. In some embodiments, the present invention provides an organic-inorganic composite material comprising an inorganic metal oxide matrix interpenetrating with a polymeric phase. Additionally, the present invention provides methods of producing organic-inorganic composite materials.
Abstract:
A printing stage includes a stage surface having a plurality of suction holes, and fixes an object to be printed on the stage surface by vacuum contact. A printing mask is employed for forming a predetermined electrode pattern on the object to be printed fixed to the printing stage. A squeegee applies a predetermined amount of pressure to a metal paste spread on the printing mask, to print the electrode pattern on the object to be printed. A porous body is provided between the object to be printed and the printing stage.