Abstract:
A light emitting apparatus includes a belt-like substrate, a light emitting element mounted on the substrate, and a luminous flux control member mounted on the substrate. The substrate has a pair of fracture surfaces formed at predetermined intervals along a lengthwise direction and formed at both ends in a widthwise direction between luminous flux control members neighboring each other along the lengthwise direction, wherein dimensions W1 and W2 in the widthwise direction between the pair of fracture surfaces are less than a dimension in the widthwise direction of the luminous flux control member, and the dimension W2 in the widthwise direction of a part overlapping the luminous flux control member in a plan view is less than the dimension W1 in the widthwise direction between the pair of fracture surfaces.
Abstract:
A wired circuit board assembly sheet has a plurality of wired circuit boards, distinguishing marks for distinguishing defectiveness of the wired circuit boards, and a supporting sheet for supporting the plurality of wired circuit boards and the distinguishing marks. Each of the distinguishing marks has an indication portion for indicating a specified one of the wired circuit boards.
Abstract:
It is an object of the present invention to permit division of an LED wiring board into various sizes to permit its use before and after the division, and also simplify operation of this division and simplify circuit design. More specifically, in the present invention, wiring patterns and for energizing LEDs are formed in a planar direction of the LED wiring board. Division grooves for dividing the LED wiring board into a plurality of sub-boards are formed on the front surface of the LED wiring board in a perpendicular direction and are provided in a manner such as to cross the wiring patterns in the planar direction. Use with the entire board before the division by the division grooves is possible, and use with division elements divided along any of the division grooves is also possible.
Abstract:
A breakaway RFID tag is configured such that it comprises part of a Printed Circuit Board Assembly (PCB). Thus, the breakaway RFID tag can be used to track the PCB as it migrates through a manufacturing process. In one embodiment, the RFID tag can be assembled first and then used to track the PCB as it is populated with components and installed into larger assemblies and ultimately into the end device. Once the PCB is installed into a larger assembly or the end device, the breakaway RFID tag is configured such that it can be broken off and attached to the outside of the larger assembly or end device.
Abstract:
A composite circuit board with fracturable structure includes a first flat cable and first signal transmission lines formed on the first flat cable. A second flat cable is stacked on and bonded to the first circuit flat cable. The second flat cable includes second signal transmission lines and forms an overlapping segment and a selective breakable segment between which a fracturable structure is formed. The selective breakable segment covers the connection segment of the first flat cable or may be broken off for separation of the flat cables. Some of the second signal transmission lines of the second flat cable are connected through a hole in the first circuit flat cable to the first signal transmission lines of the first flat cable or connected through the hole to the conductive terminals of the connection segment of the first flat cable.
Abstract:
Method and apparatuses directed to printed circuit boards (PCB) including plated through-holes for interconnecting to plating busses are described herein. A PCB strip may include an inner circuitry layer comprising a plurality of trace lines, and a top circuitry layer formed over the inner circuitry layer, the top circuitry layer including a plating bus, and at least one plated through-hole interconnecting the plating bus to one or more trace lines of the inner circuitry layer. The plating bus of the top circuitry layer and the plated through-holes may be located within at least one saw street of the PCB strip.
Abstract:
A circuit board includes a main part on which a processor is mounted, a cut part to be cut off from the main part at a cut section before the board is reused, and a conductor pattern wired through the cut part via the cut section and to be cut off into a plurality of patterns at the cut section as the cut part is cut off. The processor detects a difference in signal level between a level of a signal output from the conductor pattern before the cut part is cut off, and a level of the signal output from the conductor pattern after the cut part is cut off, to determine a number of times the board is reused.
Abstract:
In a many-up wiring substrate including a base substrate having dividing grooves formed as part of main surfaces thereof, along boundaries of a plurality of wiring substrate regions, the plurality of wiring substrate regions being arranged in a matrix, when seen in a transparent plan view, dividing grooves of the main surface and dividing grooves of an opposite main surface are formed to be deviated in one direction of transverse direction or longitudinal direction, and a distance between bottoms of the dividing grooves of one main surface and bottoms of the dividing grooves of the opposite main surface is smaller than a distance between the bottoms of the dividing grooves of the one main surface and the opposite main surface and a distance between the bottoms of the dividing grooves of the opposite main surface and the one main surface.
Abstract:
A method of fabricating a multi-piece board includes: adhering a first frame element connected to multiple piece portions to a second frame element, the first frame element forming a board main portion of a multi-piece board, the first frame element and the second frame element forming a frame portion of the multi-piece portion, thereby yielding the multi-piece board; mounting multiple electronic components on the piece portions, respectively; separating the piece portions from the frame portion; separating, from the first frame element, the second frame element adhered thereto; and adhering the second frame element to a first frame element of another board main portion.
Abstract:
A breakaway RFID tag is configured such that it comprises part of a Printed Circuit Board Assembly (PCB). Thus, the breakaway RFID tag can be used to track the PCB as it migrates through a manufacturing process. In one embodiment, the RFID tag can be assembled first and then used to track the PCB as it is populated with components and installed into larger assemblies and ultimately into the end device. Once the PCB is installed into a larger assembly or the end device, the breakaway RFID tag is configured such that it can be broken off and attached to the outside of the larger assembly or end device.