Abstract:
An electrical connector comprises a housing holding a circuit board. The circuit board has a top surface which includes a first region and a second region. Circuit traces are formed on the top surface and extend in the first and second regions. A first ground plane is disposed at a first depth in the circuit board below the circuit traces in the first region. The first depth is selected to provide a specific characteristic impedance of the circuit traces in the first region. A second ground plane is disposed at a second depth in the circuit board below the circuit traces in the second region. The second depth is selected to provide a specific characteristic impedance of the circuit traces in the second region.
Abstract:
A design rule for a printed wiring board is provided. A conductive layer and a pad are separate from each other in a distance defined by the design rule, which sufficiently prevents the capacitance coupling between the conductive layer and the pad.
Abstract:
A hybrid electromagnetic bandgap (EBG) structure for broadband suppression of noise on printed wiring boards includes an array of coplanar patches interconnected into a grid by series inductances, and a corresponding array of shunt LC networks connecting the coplanar patches to a second conductive plane. This combination of series inductances and shunt resonant vias lowers the cutoff frequency for the fundamental stopband. The series inductances and shunt capacitances may be implemented using surface mount component technology, or printed traces. Patches may also be interconnected by coplanar coupled transmission lines. The even and odd mode impedances of the coupled lines may be increased by forming slots in the second conductive plane disposed opposite to the transmission line, lowering the cutoff frequency and increasing the bandwidth of the fundamental stopband. Coplanar EBG structures may be integrated into power distribution networks of printed wiring boards for broadband suppression of electromagnetic noise.
Abstract:
A multilayered board data input unit inputs design data of a multilayered circuit board provided with through holes penetrating and mutually connecting solid-layer conductors disposed in a multilayer manner. A limitation rule setting unit sets a limitation rule for limiting the number of solid-layer conductors to be connected to the through holes. A separation processing unit separates connections of the solid-layer conductors to the through holes in the design data based on the limitation rule. At this time, when a solid-layer conductor to be separated from the through holes is selected as a candidate, the separation processing unit determines whether the solid-layer conductor is isolated by separation, when the solid-layer conductor is not isolated, determines isolation, and when the solid-layer conductor is isolated, stops separation.
Abstract:
A TAB tape for a tape carrier package may have an opening formed in a shortest connection portion. The opening may be provided in the shortest connection portion and a portion of the corresponding second lead. The opening may be arranged near a boundary between the corresponding first lead and the shortest connection portion. The opening may be sized to reduce the change of the lead width from the first lead to the second lead.
Abstract:
A four-way lead flat package IC-mount printed circuit board, carrying a four-way lead flat package IC and having front soldering land groups placed in front of the four way lead flat package IC and rear soldering land groups placed in the rear of the four-way lead flat package IC, has solder drawing lands, in a neighboring area, between the front soldering land groups and the rear soldering land groups adjacent to the front soldering land groups, and/or a trailing area of the rear soldering land groups. The solder drawing lands are formed with slits substantially parallel to the lines of soldering lands of the front soldering land groups or the rear soldering land groups placed in front of the solder drawing lands. These result in an advantageous effect of enabling the prevention of the occurrence of soldering bridges and soldering residues in the front soldering land groups or the rear soldering land groups.
Abstract:
A circuit board and a circuit apparatus using the same which can prevent displacement and film exfoliation ascribable to thermal expansion, and suppress a drop in reliability at increasing temperatures. The circuit board of the circuit apparatus includes a metal substrate having pierced holes as a core member. Protrusions are formed on the top ends of the pierced holes, and depressions are formed in the bottom ends of the pierced holes. Wiring pattern layers are formed on both sides of this metal substrate via respective insulating layers. In order to establish electrical connection between the wiring pattern layers, a conductor layer which connects the wiring pattern layers is formed through the metal substrate via the pierced holes. The conductor layer thereby establishes electrical conduction between the wiring pattern layers. Furthermore, a semiconductor chip is directly connected to the surface side of the circuit board via solder balls.
Abstract:
An electronic device which enables easily providing a mounting orientation recognition mark thereon while being provided with, on a end surface thereof, input/output terminals surrounded by a ground pattern. A substrate is provided within a case main body. A ground is formed on the surface of the substrate. An output terminal, a power terminal, a clock terminal, a GND terminal and a mounting orientation recognition mark hole have been formed on the ground through pattern removal. The main portion of the substrate is exposed through an opening in the case and the tip end portions of the output terminal and the like are slightly protruded from the end surface of the case main body. The ground pattern on the substrate, the case main body and the like are electrically connected to the GND terminal and the entire component is shielded.
Abstract:
A method for transmitting high-frequency current through a substrate is provided. The method comprises receiving the high-frequency current at a via passing through at least one conductive plane disposed within the substrate and coupled to the via with one or more tabs which span a gap between the at least one conductive plane and the via; and directing the high-frequency current along an uninterrupted path substantially on a surface of the via thereby bypassing the at least one conductive plane by conducting at least a portion of the high-frequency current between the one or more tabs.
Abstract:
An etched capacitor laminate for reducing electrical noise. The etched capacitor laminate is configured to be an element of a printed circuit board. The etched capacitor laminate comprises a first conductive sheet, an intermediate sheet of dielectric material, and a second conductive sheet. The first conductive sheet further comprises a plurality of etched forms wherein each of the etched forms is causing a local capacitive effect and a local inductive effect. The local capacitive effect and local inductive effect generates a plurality of local filters that reduce electrical noise. The intermediate sheet of dielectric material is bonded to the first conductive sheet, and the second conductive sheet is also bonded to the intermediate sheet.